Skip to main content

X-Ray Spectroscopic Analysis of Electronic Properties of One-Dimensional Nanostructured Materials

  • Chapter
  • First Online:
  • 1053 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This work concerns nanostructured titania (TiO2) arrays (tubes and rods) and nanoflaky MnO2/functionalized carbon nanotubes (CNT), which exhibit excellent physical and chemical properties, including a high surface area, light absorption, and efficient separation of electrons/holes. Although these nanomaterials have been extensively studied, a detailed experimental investigation of the microscopic phenomena of electron-orbital interaction, lattice structure modulation, and especially how they respond to external stimuli is lacking. Synchrotron X-ray spectroscopic techniques (X-ray emission (XE), X-ray absorption (XA), and resonant inelastic X-ray scattering (RIXS)) were utilized to elucidate the fundamental atomic and electronic structures of the metal and oxygen ions around the Fermi level (EF) of these nanomaterials. They can also be used to examine in detail conduction/valence band structures, bandgaps, electron/hole transportation, structural symmetry, the fine structure of the crystal field splitting of the d orbital, and the symmetry of ligand p orbitals. In situ X-ray spectroscopy is used with microscopic measurements to provide more details of activity during the fabrication and catalytic reaction of these one-dimensional nanomaterials. These investigations reveal their fundamental atomic and electronic properties and promote the study of advanced nanomaterials with a view to develop the next generation of energy sources and innovative environmental solutions in the pursuit of a sustainable future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cho IS, Chen Z, Forman AJ et al (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984

    Article  CAS  Google Scholar 

  2. Hwang YJ, Hahn C, Liu B et al (2012) Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6:5060–5069

    Article  CAS  Google Scholar 

  3. Wang G, Wang H, Ling Y et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  CAS  Google Scholar 

  4. Park H, Choi W, Hoffmann MR (2008) Effects of the preparation method of the ternary CdS/TiO 2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J Mater Chem 18:2379–2385

    Article  CAS  Google Scholar 

  5. Su D, Wang J, Tang Y et al (2011) Constructing WO 3/TiO 2 composite structure towards sufficient use of solar energy. Chem Commun 47:4231–4233

    Article  CAS  Google Scholar 

  6. Cao J, Luo B, Lin H et al (2012) Thermodecomposition synthesis of WO 3/H 2 WO 4 heterostructures with enhanced visible light photocatalytic properties. Appl Catal B 111:288–296

    Article  Google Scholar 

  7. Isimjan TT, He Q, Liu Y et al (2013) Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: a model for tandem environmental catalysis. ACS Sustain Chem Eng 1:381–388

    Article  CAS  Google Scholar 

  8. Fan S-Q, Kim D, Kim J-J et al (2009) Highly efficient CdSe quantum-dot-sensitized TiO 2 photoelectrodes for solar cell applications. Electrochem Commun 11:1337–1339

    Article  CAS  Google Scholar 

  9. Chen H, Fu W, Yang H et al (2010) Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic devices. Electrochim Acta 56:919–924

    Article  CAS  Google Scholar 

  10. Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990

    Article  CAS  Google Scholar 

  11. Wang G, Yang X, Qian F et al (2010) Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10:1088–1092

    Article  CAS  Google Scholar 

  12. Guo W, Xue X, Wang S et al (2012) An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett 12:2520–2523

    Article  CAS  Google Scholar 

  13. Lei Z, Shi F, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4:1058–1064

    Article  CAS  Google Scholar 

  14. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  15. Wei W, Cui X, Chen W et al (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  16. Yu G, Hu L, Vosgueritchian M et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  17. Du L, Yang P, Yu X et al (2014) Flexible supercapacitors based on carbon nanotube/MnO 2 nanotube hybrid porous films for wearable electronic devices. J Mater Chem A 2:17561–17567

    Article  CAS  Google Scholar 

  18. Zhao X, Zhang L, Murali S et al (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6:5404–5412

    Article  CAS  Google Scholar 

  19. Jin Y, Chen H, Chen M et al (2013) Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 5:3408–3416

    Article  CAS  Google Scholar 

  20. Zhao L, Yu X, Yu J et al (2014) Remarkably improved electrode performance of bulk MnS by forming a solid solution with FeS–understanding the Li storage mechanism. Adv Funct Mater 24:5557–5566

    Article  CAS  Google Scholar 

  21. Pan B, Feng Z, Sa N et al (2016) Advanced hybrid battery with a magnesium metal anode and a spinel LiMn 2 O 4 cathode. Chem Commun 52:9961–9964

    Article  CAS  Google Scholar 

  22. Xu J, Ma C, Balasubramanian M et al (2014) Understanding Na 2 Ti 3 O 7 as an ultra-low voltage anode material for a Na-ion battery. Chem Commun 50:12564–12567

    Article  CAS  Google Scholar 

  23. Lukatskaya MR, Bak SM, Yu X et al (2015) Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater 5:1500589

    Article  Google Scholar 

  24. Gorlin Y, Lassalle-Kaiser B, Benck JD et al (2013) In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J Am Chem Soc 135:8525–8534

    Article  CAS  Google Scholar 

  25. Chen CL, Dong CL, Chen CH et al (2015) Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Phys Chem Chem Phys 17:22064–22071

    Article  CAS  Google Scholar 

  26. Kao LC, Liou SYH, Dong CL et al (2016) Tandem structure of QD cosensitized TiO2 nanorod arrays for solar light driven hydrogen generation. ACS Sustain Chem Eng 4:210–218

    Article  CAS  Google Scholar 

  27. Chang HW, Lu YR, Chen JL et al (2015) Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation. Nanoscale 7:1725–1735

    Article  CAS  Google Scholar 

  28. Liu Z, Zhang X, Nishimoto S et al (2008) Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol 42:8547–8551

    Article  CAS  Google Scholar 

  29. Liu Z, Zhang X, Nishimoto S et al (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259

    Article  CAS  Google Scholar 

  30. Shankar K, Basham JI, Allam NK et al (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359

    Article  CAS  Google Scholar 

  31. Nah YC, Paramasivam I, Schmuki P (2010) Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11:2698–2713

    Article  CAS  Google Scholar 

  32. Lin C-J, Yu W-Y, Lu Y-T et al (2008) Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chem Commun 45:6031–6033

    Article  Google Scholar 

  33. Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 45:2791–2808

    Article  Google Scholar 

  34. Lin C-J, Yu W-Y, Chien S-H (2008) Rough conical-shaped TiO2-nanotube arrays for flexible back illuminated dye-sensitized solar cells. Appl Phys Lett 93:133107

    Article  Google Scholar 

  35. Lin C-J, Yu W-Y, Chien S-H (2010) Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J Mater Chem 20:1073–1077

    Article  CAS  Google Scholar 

  36. Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637

    Article  CAS  Google Scholar 

  37. Paulose M, Prakasam HE, Varghese OK et al (2007) TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111:14992–14997

    Article  CAS  Google Scholar 

  38. Albu SP, Ghicov A, Macak JM et al (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289

    Article  CAS  Google Scholar 

  39. Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261

    Article  CAS  Google Scholar 

  40. Lin J, Chen J, Chen X (2010) Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization. Electrochem Commun 12:1062–1065

    Article  CAS  Google Scholar 

  41. Albu SP, Ghicov A, Aldabergenova S et al (2008) Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 20:4135–4139

    CAS  Google Scholar 

  42. Ghicov A, Tsuchiya H, Macak JM et al (2006) Annealing effects on the photoresponse of TiO2 nanotubes. Phys Status Solidi 203:R28–R30

    Article  CAS  Google Scholar 

  43. Crocombette J, Jollet F (1994) Ti 2p X-ray absorption in titanium dioxides (TiO2): the influence of the cation site environment. J Phys Condens Matter 6:10811

    Article  CAS  Google Scholar 

  44. Ruus R, Kikas A, Saar A et al (1997) Ti 2p and O 1s X-ray absorption of TiO2 polymorphs. Solid State Commun 104:199–203

    Article  CAS  Google Scholar 

  45. Harada Y, Kinugasa T, Eguchi R et al (2000) Polarization dependence of soft-X-ray Raman scattering at the L edge of TiO 2. Phys Rev B 61:12854

    Article  CAS  Google Scholar 

  46. De Groot F, Fuggle J, Thole B et al (1990) 2p X-ray absorption of 3d transition-metal compounds: an atomic multiplet description including the crystal field. Phys Rev B 42:5459

    Article  Google Scholar 

  47. Kucheyev S, Van Buuren T, Baumann T et al (2004) Electronic structure of titania aerogels from soft X-ray absorption spectroscopy. Phys Rev B 69:245102

    Article  Google Scholar 

  48. Krüger P (2010) Multichannel multiple scattering calculation of L 2, 3-edge spectra of TiO2 and SrTiO3: importance of multiplet coupling and band structure. Phys Rev B 81:125121

    Article  Google Scholar 

  49. Thakur H, Kumar R, Thakur P et al (2011) Modifications in structural and electronic properties of TiO2 thin films using swift heavy ion irradiation. J Appl Phys 110:083718

    Article  Google Scholar 

  50. De Groot F, Faber J, Michiels J et al (1993) Oxygen 1s X-ray absorption of tetravalent titanium oxides: a comparison with single-particle calculations. Phys Rev B 48:2074

    Article  Google Scholar 

  51. Brydson R, Sauer H, Engel W et al (1989) Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity. J Phys Condens Matter 1:797

    Article  CAS  Google Scholar 

  52. Matsubara M, Uozumi T, Kotani A et al (2002) Polarization dependence of resonant X-ray emission spectra in 3dn transition metal compounds with n = 0, 1, 2, 3. J Phys Soc Jpn 71:347–356

    Article  CAS  Google Scholar 

  53. Agui A, Uozumi T, Mizumaki M et al (2009) Intermetallic charge transfer in FeTiO3 probed by resonant inelastic soft X-ray scattering. Phys Rev B 79:092402

    Article  Google Scholar 

  54. Augustsson A, Henningsson A, Butorin S et al (2003) Lithium ion insertion in nanoporous anatase TiO2 studied with RIXS. J Chem Phys 119:3983–3987

    Article  CAS  Google Scholar 

  55. Kuznetsova A, Popova I, Yates JT et al (2001) Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J Am Chem Soc 123:10699–10704

    Article  CAS  Google Scholar 

  56. Zhong J, Song L, Meng J et al (2009) Bio–nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47:967–973

    Article  CAS  Google Scholar 

  57. Zhou J, Fang H, Hu Y et al (2009) Immobilization of RuO2 on carbon nanotube: an X-ray absorption near-edge structure study. J Phys Chem C 113:10747–10750

    Article  CAS  Google Scholar 

  58. Jiang W, Zhang K, Wei L et al (2013) Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale 5:11108–11117

    Article  CAS  Google Scholar 

  59. Liu M, Gan L, Xiong W et al (2014) Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. J Mater Chem A 2:2555–2562

    Article  CAS  Google Scholar 

  60. Lee SW, Kim J, Chen S et al (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896

    Article  CAS  Google Scholar 

  61. Lee S-W, Bak S-M, Lee C-W et al (2014) Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J Phys Chem C 118:2834–2843

    Article  CAS  Google Scholar 

  62. Zhou J, Zhou X, Sun X et al (2007) Interaction between Pt nanoparticles and carbon nanotubes–An X-ray absorption near edge structures (XANES) study. Chem Phys Lett 437:229–232

    Article  CAS  Google Scholar 

  63. Ma S-B, Ahn K-Y, Lee E-S et al (2007) Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 45:375–382

    Article  CAS  Google Scholar 

  64. Yoon W-S, Balasubramanian M, Chung KY et al (2005) Investigation of the charge compensation mechanism on the electrochemically Li-Ion deintercalated Li1-x Co1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J Am Chem Soc 127:17479–17487

    Article  CAS  Google Scholar 

  65. Chang J-K, Lee M-T, Tsai W-T et al (2009) X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy studies on reversible insertion/desertion of dicyanamide anions into/from manganese oxide in ionic liquid. Chem Mater 21:2688–2695

    Article  CAS  Google Scholar 

  66. Turner S, Buseck PR (1979) Manganese oxide tunnel structures and their intergrowths. Science 203:456–458

    Article  CAS  Google Scholar 

  67. Dnrrs VA (1992) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: part I. Information from XANES spectroscopy. Am Mineral 77:1133–1143

    Google Scholar 

  68. Wortham E, Bonnet B, Jones DJ et al (2004) Birnessite-type manganese oxide–alkylamine mesophases obtained by intercalation and their thermal behaviour. J Mater Chem 14:121–126

    Article  CAS  Google Scholar 

  69. Shen XF, Ding YS, Liu J et al (2005) Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv Mater 17:805–809

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Ministry of Science and Technology (MoST) of Taiwan for financially supporting these studies under contracts nos. MoST 104-2112-M-032-008-MY3, MoST 104-2923-M-032-001-MY3, and 105-2112-M-213-013-MY3. The authors are also grateful to NSRRC for providing beamtime and beamline support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi Liang Chen or Chung-Li Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, HW., Chen, C.L., Liou, S.Y.H., Dong, CL. (2019). X-Ray Spectroscopic Analysis of Electronic Properties of One-Dimensional Nanostructured Materials. In: Shen, G., Chueh, YL. (eds) Nanowire Electronics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2367-6_1

Download citation

Publish with us

Policies and ethics