Skip to main content

Abstract

This chapter introduces the mathematical background of conventional inference by describing the typical inference problems of detection, estimation, classification, and tracking. Specific challenges associated with inference in practical sensor networks are discussed next, with emphasis on Byzantines. Finally, a taxonomy of results is presented: the results are divided into fundamental limits of attack strategies from the Byzantine’s perspective and mitigation strategies from the network’s perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, it is the probability density function (pdf), but we use the term distribution and pdf interchangeably.

  2. 2.

    We are focusing on the continuous case. Discrete cases can be considered in a similar manner.

References

  1. Alhakeem S, Varshney PK (1995) A unified approach to the design of decentralized detection systems. IEEE Trans Aerosp Electron Syst 31(1):9–20. https://doi.org/10.1109/7.366288

  2. Appadwedula S, Veeravalli VV, Jones DL (2005) Energy-efficient detection in sensor networks. IEEE J Sel Areas Commun 23(4):693–702. https://doi.org/10.1109/JSAC.2005.843536

  3. Appadwedula S, Veeravalli VV, Jones DL (2008) Decentralized detection with censoring sensors. IEEE Trans Signal Process 56(4):1362–1373. https://doi.org/10.1109/TSP.2007.909355

  4. Bell KL (1995) Performance bounds in parameter estimation with application to bearing estimation. PhD thesis, George Mason University

    Google Scholar 

  5. Blum RS, Kassam SA, Poor HV (1997) Distributed detection with multiple sensors: Part II-Advanced topics. Proc IEEE 85(1):64–79. https://doi.org/10.1109/5.554209

  6. Chamberland JF, Veeravalli VV (2006) How dense should a sensor network be for detection with correlated observations? IEEE Trans Inf Theory 52(11):5099–5106. https://doi.org/10.1109/TIT.2006.883551

  7. Chamberland JF, Veeravalli VV (2007) Wireless sensors in distributed detection applications. IEEE Signal Process Mag 24(3):16–25. https://doi.org/10.1109/MSP.2007.361598

  8. Chen B, Tong L, Varshney PK (2006) Channel-aware distributed detection in wireless sensor networks. IEEE Signal Process Mag 23(4):16–26. https://doi.org/10.1109/MSP.2006.1657814

  9. Chen H, Varshney PK (2009) Performance limit for distributed estimation systems with identical one-bit quantizers. IEEE Trans Signal Process 58(1):1607–1621. https://doi.org/10.1109/JPROC.2014.2341554

  10. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Google Scholar 

  11. Dabeer O, Masry E (2008) Multivariate signal parameter estimation under dependent noise from 1-bit dithered quantized data. IEEE Trans Inf Theory 54(4):1637–1654. https://doi.org/10.1109/TIT.2008.917637

  12. Iyengar S, Varshney PK, Damarla T (2011) A parametric copula based framework for hypotheses testing using heterogeneous data. IEEE Trans Signal Process 59(5):2308–2319. https://doi.org/10.1109/TSP.2011.2105483

  13. Jiang R, Chen B (2005) Fusion of censored decisions in wireless sensor networks. IEEE Trans Wirel Commun 4(6):2668–2673. https://doi.org/10.1109/TWC.2005.858363

  14. Kar S, Chen H, Varshney PK (2012) Optimal identical binary quantizer design for distributed estimation. IEEE Trans Signal Process 60(7):3896–3901. https://doi.org/10.1109/TSP.2012.2191777

  15. Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall PTR, Upper Saddle River, NJ

    Google Scholar 

  16. Kay SM (1998) Fundamentals of statistical signal processing: detection theory. Prentice Hall PTR, Upper Saddle River, NJ

    Google Scholar 

  17. Lam WM, Reibman AR (1993) Design of quantizers for decentralized estimation systems. IEEE Trans Comput 41(11):1602–1605. https://doi.org/10.1109/26.241739

  18. Luo ZQ (2005) Universal decentralized estimation in a bandwidth constrained sensor network. IEEE Trans Inf Theory 51(6):2210–2219. https://doi.org/10.1109/TIT.2005.847692

  19. Neyman J, Pearson ES (1928) On the use and interpretation of certain test criteria for purposes of statistical inference: Part I. Biometrika 20A(1/2):175–240. https://doi.org/10.2307/2331945

  20. Ozdemir O, Niu R, Varshney PK (2009) Channel aware target localization with quantized data in wireless sensor networks. IEEE Trans Signal Process 57(3):1190–1202. https://doi.org/10.1109/TSP.2008.2009893

  21. Radner R (1962) Team decision problems. Ann Math Stat 33(3):857–881. http://www.jstor.org/stable/2237863

  22. Rago C, Willett P, Bar-Shalom Y (1996) Censoring sensors: a low-communication-rate scheme for distributed detection. IEEE Trans Aerosp Electron Syst 32(2):554–568. https://doi.org/10.1109/7.489500

  23. Ribeiro A, Giannakis GB (2006) Bandwidth-constrained distributed estimation for wireless sensor networks-Part I: Gaussian case. IEEE Trans Signal Process 54(3):1131–1143. https://doi.org/10.1109/TSP.2005.863009

  24. Sundaresan A, Varshney PK, Rao NSV (2011) Copula-based fusion of correlated decisions. IEEE Trans Aerosp Electron Syst 47(1):454–471. https://doi.org/10.1109/TAES.2011.5705686

  25. Swaszek PE (1993) On the performance of serial networks in distributed detection. IEEE Trans Aerosp Electron Syst 29(1):254–260. https://doi.org/10.1109/7.249133

  26. Tay WP, Tsitsiklis JN, Win MZ (2008) Data fusion trees for detection: does architecture matter? IEEE Trans Inf Theory 54(9):4155–4168. https://doi.org/10.1109/TIT.2008.928240

  27. Tenney RR, Sandell NR Jr (1981) Detection with distributed sensors. IEEE Trans Aerosp Electron Syst AES-17(4):501–510. https://doi.org/10.1109/TAES.1981.309178

  28. Van Trees HL, Bell KL (2007) Bayesian bounds for parameter estimation and nonlinear filtering/tracking. Wiley-IEEE, Hoboken, NJ

    Google Scholar 

  29. Varshney PK (1996) Distributed detection and data fusion. Springer, New York

    Google Scholar 

  30. Veeravalli VV, Varshney PK (2012) Distributed inference in wireless sensor networks. Phil Trans R Soc A 370(1958):100–117. https://doi.org/10.1098/rsta.2011.0194

  31. Vempaty A, He H, Chen B, Varshney PK (2014) On quantizer design for distributed Bayesian estimation in sensor networks. IEEE Trans Signal Process 62(20):5359–5369. https://doi.org/10.1109/TSP.2014.23509645

  32. Venkitasubramaniam P, Tong L, Swami A (2007) Quantization for maximin ARE in distributed estimation. IEEE Trans Signal Process 55(7):3596–3605. https://doi.org/10.1109/TSP.2007.894279

  33. Viswanathan R, Varshney PK (1997) Distributed detection with multiple sensors: Part I-Fundamentals. Proc IEEE 85(1):54–63. https://doi.org/10.1109/5.554208

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Vempaty .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vempaty, A., Kailkhura, B., Varshney, P.K. (2018). Background. In: Secure Networked Inference with Unreliable Data Sources. Springer, Singapore. https://doi.org/10.1007/978-981-13-2312-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2312-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2311-9

  • Online ISBN: 978-981-13-2312-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics