Skip to main content

Forensic Biochemistry

  • Chapter
  • First Online:
Forensic Medicine and Human Cell Research

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

Abstract

Pathophysiological diagnoses in autopsies made on the basis of morphological findings are vital aspects of autopsy diagnoses. To improve the accuracy of autopsy diagnoses, a variety of screening methods, including biochemical tests, are employed. However, most of these methods are currently used when resorting to biochemical test results in case of an autopsy diagnosis of a difficult case. Agonal or postmortem changes in variable affect most parameters assessed as part of biochemical testing in autopsies. Sporadic testing using a single parameter is therefore not useful to diagnosis. To obtain a screening tool that helps in identifying underlying diseases and clarifying the pathophysiology during the death process, it is important to collect samples from the appropriate site using appropriate methods or perform systematic biochemical testing where several items are being evaluated. Autopsies are the ultimate diagnostic tool requiring the most accurate and reliable diagnosis. To this end they need to include systematic biochemical testing as a routine tool. This paper summarizes the importance of biochemical testing, from the perspectives of systemic indices and tissue-specific indices, in a subset of biochemical tests available and reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohle SD, Sampson BA. The negative autopsy: sudden cardiac death or other? Cardiovasc Pathol. 2001;10(5):219–22.

    Article  CAS  Google Scholar 

  2. Basso C, Burke M, Fornes P, Gallagher PJ, de Gouveia RH, Sheppard M, et al. Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch. 2008;452(1):11–8.

    Article  Google Scholar 

  3. Coe JI. Postmortem chemistry update. Emphasis on forensic application. Am J Forensic Med Pathol. 1993;14(2):91–117.

    Article  CAS  Google Scholar 

  4. Maeda H, Zhu BL, Ishikawa T, Quan L, Michiue T. Significance of postmortem biochemistry in determining the cause of death. Leg Med (Tokyo). 2009;11(Suppl 1):S46–9.

    Article  Google Scholar 

  5. Maeda H, Ishikawa T, Michiue T. Forensic biochemistry for functional investigation of death: concept and practical application. Leg Med (Tokyo). 2011;13(2):55–67.

    Article  CAS  Google Scholar 

  6. Palmiere C, Mangin P. Postmortem chemistry update part I. Int J Legal Med. 2012;126(2):187–98.

    Article  Google Scholar 

  7. Palmiere C, Mangin P. Postmortem chemistry update part II. Int J Legal Med. 2012;126(2):199–215.

    Article  Google Scholar 

  8. Madea B. Sudden death, especially in infancy—improvement of diagnoses by biochemistry, immunohistochemistry and molecular pathology. Leg Med (Tokyo). 2009;11(Suppl 1):S36–42.

    Article  Google Scholar 

  9. Madea B, Musshoff F. Postmortem biochemistry. Forensic Sci Int. 2007;165(2–3):165–71.

    Article  CAS  Google Scholar 

  10. Kernbach-Wighton G. Diagnostic problems with functional causes of death: analytical approaches and procedures. Leg Med (Tokyo). 2009;11(Suppl 1):S31–5.

    Article  Google Scholar 

  11. Umehara T, Yamamoto T, Ikematsu K. Influence of postmortem interval on RNA integrity and protein level: examination of degradation speed of Rps18 and Gapdh in an animal model using real-time quantitative RT-PCR. Jpn J Forensic Pathol. 2017;23:67–74.

    Google Scholar 

  12. Coe JI. Postmortem chemistry of blood, cerebrospinal fluid, and vitreous humor. Leg Med Annu. 1976;1977:55–92.

    Google Scholar 

  13. Quan L, Ishikawa T, Michiue T, Li DR, Zhao D, Yoshida C, et al. Analyses of cardiac blood cells and serum proteins with regard to cause of death in forensic autopsy cases. Leg Med (Tokyo). 2009;11(Suppl 1):S297–300.

    Article  Google Scholar 

  14. Fujita MQ, Zhu BL, Ishida K, Quan L, Oritani S, Maeda H. Serum C-reactive protein levels in postmortem blood—an analysis with special reference to the cause of death and survival time. Forensic Sci Int. 2002;130(2–3):160–6.

    Article  CAS  Google Scholar 

  15. Ishikawa T, Hamel M, Zhu BL, Li DR, Zhao D, Michiue T, et al. Comparative evaluation of postmortem serum concentrations of neopterin and C-reactive protein. Forensic Sci Int. 2008;179(2–3):135–43.

    Article  CAS  Google Scholar 

  16. Zhu BL, Ishida K, Quan L, Taniguchi M, Oritani S, Li DR, et al. Postmortem serum uric acid and creatinine levels in relation to the causes of death. Forensic Sci Int. 2002;125(1):59–66.

    Article  CAS  Google Scholar 

  17. Zhu BL, Ishikawa T, Michiue T, Tanaka S, Zhao D, Li DR, et al. Differences in postmortem urea nitrogen, creatinine and uric acid levels between blood and pericardial fluid in acute death. Leg Med (Tokyo). 2007;9(3):115–22.

    Article  CAS  Google Scholar 

  18. Maeda H, Zhu BL, Bessho Y, Ishikawa T, Quan L, Michiue T, et al. Postmortem serum nitrogen compounds and C-reactive protein levels with special regard to investigation of fatal hyperthermia. Forensic Sci Med Pathol. 2008;4(3):175–80.

    Article  CAS  Google Scholar 

  19. Maeda H, Michiue T, Zhu BL, Ishikawa T, Quan L, Bessho Y, et al. Potential risk factors for sudden cardiac death: an analysis of medicolegal autopsy cases. Leg Med (Tokyo). 2009;11(Suppl 1):S263–5.

    Article  Google Scholar 

  20. Zhu BL, Ishida K, Taniguchi M, Quan L, Oritani S, Tsuda K, et al. Possible postmortem serum markers for differentiation between fresh-, saltwater drowning and acute cardiac death: a preliminary investigation. Leg Med (Tokyo). 2003;5(Suppl 1):S298–301.

    Article  CAS  Google Scholar 

  21. Maeda H, Zhu BL, Ishikawa T, Quan L, Michiue T, Bessho Y, et al. Analysis of postmortem biochemical findings with regard to the lung weight in drowning. Leg Med (Tokyo). 2009;11(Suppl 1):S269–72.

    Article  Google Scholar 

  22. Palmiere C, Scarpelli MP, Varlet V, Baumann P, Michaud K, Augsburger M. Fatal intravenous injection of potassium: is postmortem biochemistry useful for the diagnosis? Forensic Sci Int. 2017;274:27–32.

    Article  CAS  Google Scholar 

  23. Belsey SL, Flanagan RJ. Postmortem biochemistry: current applications. J Forensic Legal Med. 2016;41:49–57.

    Article  CAS  Google Scholar 

  24. Girard C, Scarpelli MP, Tettamanti C, Palmiere C. Postmortem evaluation of cholesterol, triglyceride, and apolipoprotein levels. Int J Legal Med. 2017;131(6):1777–82.

    Article  Google Scholar 

  25. Baselt RC, Shaw RF, McEvilly R. Effect of sodium fluoride on cholinesterase activity in postmortem blood. J Forensic Sci. 1985;30(4):1206–9.

    Article  CAS  Google Scholar 

  26. Coe JI. Postmortem chemistries on blood with particular reference to urea nitrogen, electrolytes, and bilirubin. J Forensic Sci. 1974;19(1):33–42.

    CAS  PubMed  Google Scholar 

  27. Quan L, Zhu BL, Ishikawa T, Michiue T, Zhao D, Ogawa M, et al. Postmortem serum erythropoietin level as a marker of survival time in injury deaths. Forensic Sci Int. 2010;200(1–3):117–22.

    Article  CAS  Google Scholar 

  28. Quan L, Zhu BL, Ishikawa T, Michiue T, Zhao D, Li DR, et al. Postmortem serum erythropoietin levels in establishing the cause of death and survival time at medicolegal autopsy. Int J Legal Med. 2008;122(6):481–7.

    Article  CAS  Google Scholar 

  29. Palmiere C, Egger C. Usefulness of pericardial and pleural fluids for the postmortem diagnosis of sepsis. J Forensic Legal Med. 2014;28:15–8.

    Article  Google Scholar 

  30. Palmiere C, Augsburger M. Endocan measurement for the postmortem diagnosis of sepsis. Leg Med (Tokyo). 2014;16(1):1–7.

    Article  CAS  Google Scholar 

  31. Maiese A, Del Nonno F, Dell'Aquila M, Moauro M, Baiocchini A, Mastracchio A, et al. Postmortem diagnosis of sepsis: a preliminary immunohistochemical study with an anti-procalcitonin antibody. Leg Med (Tokyo). 2017;28:1–5.

    Article  Google Scholar 

  32. Palmiere C, Augsburger M. Postmortem serum protein growth arrest-specific 6 levels in sepsis-related deaths. Int J Legal Med. 2015;129(5):1079–84.

    Article  Google Scholar 

  33. Schrag B, Roux-Lombard P, Schneiter D, Vaucher P, Mangin P, Palmiere C. Evaluation of C-reactive protein, procalcitonin, tumor necrosis factor alpha, interleukin-6, and interleukin-8 as diagnostic parameters in sepsis-related fatalities. Int J Legal Med. 2012;126(4):505–12.

    Article  Google Scholar 

  34. Foglar C, Lindsey RW. C-reactive protein in orthopedics. Orthopedics. 1998;21(6):687–91. quiz 92-3.

    CAS  PubMed  Google Scholar 

  35. Steel DM, Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today. 1994;15(2):81–8.

    Article  CAS  Google Scholar 

  36. Quan L, Fujita MQ, Zhu BL, Ishida K, Maeda H. Immunohistochemical distribution of C-reactive protein in the hepatic tissue in forensic autopsy. Forensic Sci Int. 2000;113(1–3):177–82.

    Article  CAS  Google Scholar 

  37. Reinhart K, Meisner M, Brunkhorst FM. Markers for sepsis diagnosis: what is useful? Crit Care Clin. 2006;22(3):503–19. ix-x.

    Article  CAS  Google Scholar 

  38. Reinhart K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev. 2012;25(4):609–34.

    Article  CAS  Google Scholar 

  39. Dahaba AA, Metzler H. Procalcitonin’s role in the sepsis cascade. Is procalcitonin a sepsis marker or mediator? Minerva Anestesiol. 2009;75(7–8):447–52.

    CAS  PubMed  Google Scholar 

  40. Picariello C, Lazzeri C, Valente S, Chiostri M, Gensini GF. Procalcitonin in acute cardiac patients. Intern Emerg Med. 2011;6(3):245–52.

    Article  Google Scholar 

  41. Palmiere C, Augsburger M. Markers for sepsis diagnosis in the forensic setting: state of the art. Croat Med J. 2014;55(2):103–14.

    Article  CAS  Google Scholar 

  42. Zhu BL, Ishikawa T, Michiue T, Quan L, Maeda H. Postmortem serum endotoxin level in relation to the causes of death. Leg Med (Tokyo). 2005;7(2):103–9.

    Article  CAS  Google Scholar 

  43. Uemura K, Shintani-Ishida K, Saka K, Nakajima M, Ikegaya H, Kikuchi Y, et al. Biochemical blood markers and sampling sites in forensic autopsy. J Forensic Legal Med. 2008;15(5):312–7.

    Article  Google Scholar 

  44. Jashnani KD, Kale SA, Rupani AB. Vitreous humor: biochemical constituents in estimation of postmortem interval. J Forensic Sci. 2010;55(6):1523–7.

    Article  Google Scholar 

  45. Mulla A, Massey KL, Kalra J. Vitreous humor biochemical constituents: evaluation of between-eye differences. Am J Forensic Med Pathol. 2005;26(2):146–9.

    PubMed  Google Scholar 

  46. Perez-Carceles MD, del Pozo S, Sibon A, Noguera JA, Osuna E, Vizcaya MA, et al. Serum biochemical markers in drowning: diagnostic efficacy of strontium and other trace elements. Forensic Sci Int. 2012;214(1–3):159–66.

    CAS  PubMed  Google Scholar 

  47. Zhu BL, Ishikawa T, Quan L, Li DR, Zhao D, Michiue T, et al. Evaluation of postmortem serum calcium and magnesium levels in relation to the causes of death in forensic autopsy. Forensic Sci Int. 2005;155(1):18–23.

    Article  CAS  Google Scholar 

  48. Farmer JG, Benomran F, Watson AA, Harland WA. Magnesium, potassium, sodium and calcium in post-mortem vitreous humour from humans. Forensic Sci Int. 1985;27(1):1–13.

    Article  CAS  Google Scholar 

  49. Li DR, Quan L, Zhu BL, Ishikawa T, Michiue T, Zhao D, et al. Evaluation of postmortem calcium and magnesium levels in the pericardial fluid with regard to the cause of death in medicolegal autopsy. Leg Med (Tokyo). 2009;11(Suppl 1):S276–8.

    Article  Google Scholar 

  50. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Quan L, et al. Evaluation of postmortem urea nitrogen, creatinine and uric acid levels in pericardial fluid in forensic autopsy. Leg Med (Tokyo). 2005;7(5):287–92.

    Article  CAS  Google Scholar 

  51. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Bessho Y, et al. Postmortem cardiac troponin I and creatine kinase MB levels in the blood and pericardial fluid as markers of myocardial damage in medicolegal autopsy. Leg Med (Tokyo). 2007;9(5):241–50.

    Article  CAS  Google Scholar 

  52. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Oritani S, et al. Postmortem cardiac troponin T levels in the blood and pericardial fluid. Part 1. Analysis with special regard to traumatic causes of death. Leg Med (Tokyo). 2006;8(2):86–93.

    Article  CAS  Google Scholar 

  53. Zhu BL, Ishida K, Quan L, Taniguchi M, Oritani S, Kamikodai Y, et al. Post-mortem urinary myoglobin levels with reference to the causes of death. Forensic Sci Int. 2001;115(3):183–8.

    Article  CAS  Google Scholar 

  54. Ishikawa T, Zhu BL, Li DR, Zhao D, Michiue T, Maeda H. Immunohistochemical investigation of ubiquitin and myoglobin in the kidney in medicolegal autopsy cases. Forensic Sci Int. 2007;171(2–3):136–41.

    Article  CAS  Google Scholar 

  55. Wang Q, Michiue T, Ishikawa T, Zhu BL, Maeda H. Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases. Leg Med (Tokyo). 2011;13(5):226–32.

    Article  CAS  Google Scholar 

  56. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Quan L, et al. Postmortem serum catecholamine levels in relation to the cause of death. Forensic Sci Int. 2007;173(2–3):122–9.

    Article  CAS  Google Scholar 

  57. Yoshida C, Ishikawa T, Michiue T, Quan L, Maeda H. Postmortem biochemistry and immunohistochemistry of chromogranin A as a stress marker with special regard to fatal hypothermia and hyperthermia. Int J Legal Med. 2011;125(1):11–20.

    Article  Google Scholar 

  58. Newby LK. Markers of cardiac ischemia, injury, and inflammation. Prog Cardiovasc Dis. 2004;46(5):404–16.

    Article  Google Scholar 

  59. French JK, White HD. Clinical implications of the new definition of myocardial infarction. Heart. 2004;90(1):99–106.

    Article  Google Scholar 

  60. Perez-Carceles MD, Noguera J, Jimenez JL, Martinez P, Luna A, Osuna E. Diagnostic efficacy of biochemical markers in diagnosis post-mortem of ischaemic heart disease. Forensic Sci Int. 2004;142(1):1–7.

    Article  CAS  Google Scholar 

  61. Davies SJ, Gaze DC, Collinson PO. Investigation of cardiac troponins in postmortem subjects: comparing antemortem and postmortem levels. Am J Forensic Med Pathol. 2005;26(3):213–5.

    Article  Google Scholar 

  62. Cina SJ, Brown DK, Smialek JE, Collins KA. A rapid postmortem cardiac troponin T assay: laboratory evidence of sudden cardiac death. Am J Forensic Med Pathol. 2001;22(2):173–6.

    Article  CAS  Google Scholar 

  63. Ellingsen CL, Hetland O. Serum concentrations of cardiac troponin T in sudden death. Am J Forensic Med Pathol. 2004;25(3):213–5.

    Article  Google Scholar 

  64. Dressler J, Felscher D, Koch R, Muller E. Troponin T in legal medicine. Lancet. 1998;352(9121):38.

    Article  CAS  Google Scholar 

  65. Lorente JA, Villanueva E, Hernandez-Cueto C, Luna JD. Plasmatic levels of atrial natriuretic peptide (ANP) in drowning. A pilot study. Forensic Sci Int. 1990;44(1):69–75.

    Article  CAS  Google Scholar 

  66. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Tanaka S, et al. Postmortem pericardial natriuretic peptides as markers of cardiac function in medico-legal autopsies. Int J Legal Med. 2007;121(1):28–35.

    Article  Google Scholar 

  67. Michaud K, Augsburger M, Donze N, Sabatasso S, Faouzi M, Bollmann M, et al. Evaluation of postmortem measurement of NT-proBNP as a marker for cardiac function. Int J Legal Med. 2008;122(5):415–20.

    Article  Google Scholar 

  68. Zhu BL, Ishida K, Quan L, Li DR, Taniguchi M, Fujita MQ, et al. Pulmonary immunohistochemistry and serum levels of a surfactant-associated protein a in fatal drowning. Leg Med (Tokyo). 2002;4(1):1–6.

    Article  Google Scholar 

  69. Zhu BL, Ishida K, Fujita MQ, Maeda H. Immunohistochemical investigation of a pulmonary surfactant in fatal mechanical asphyxia. Int J Legal Med. 2000;113(5):268–71.

    Article  CAS  Google Scholar 

  70. Zhu BL, Ishida K, Quan L, Fujita MQ, Maeda H. Immunohistochemistry of pulmonary surfactant apoprotein a in forensic autopsy: reassessment in relation to the causes of death. Forensic Sci Int. 2000;113(1–3):193–7.

    Article  CAS  Google Scholar 

  71. Stemberga V, Stifter S, Cuculic D, Coklo M, Bosnar A. Immunohistochemical surfactant protein-A expression: fatal drowning vs. postmortem immersion. Med Hypotheses. 2009;72(4):413–5.

    Article  CAS  Google Scholar 

  72. Ishida K, Zhu BL, Maeda H. A quantitative RT-PCR assay of surfactant-associated protein A1 and A2 mRNA transcripts as a diagnostic tool for acute asphyxial death. Leg Med (Tokyo). 2002;4(1):7–12.

    Article  CAS  Google Scholar 

  73. Ishida K, Zhu B, Quan L, Fujita MQ, Maeda H. Pulmonary surfactant-associated protein A levels in cadaveric sera with reference to the cause of death. Forensic Sci Int. 2000;109(2):125–33.

    Article  CAS  Google Scholar 

  74. Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H. Postmortem serum protein S100B levels with regard to the cause of death involving brain damage in medicolegal autopsy cases. Leg Med (Tokyo). 2006;8(2):71–7.

    Article  CAS  Google Scholar 

  75. Li DR, Ishikawa T, Zhao D, Michiue T, Quan L, Zhu BL, et al. Histopathological changes of the hippocampus neurons in brain injury. Histol Histopathol. 2009;24(9):1113–20.

    PubMed  Google Scholar 

  76. Li DR, Ishikawa T, Quan L, Zhao D, Michiue T, Zhu BL, et al. Morphological analysis of astrocytes in the hippocampus in mechanical asphyxiation. Leg Med (Tokyo). 2010;12(2):63–7.

    Article  Google Scholar 

  77. Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H. Immunohistochemical distribution of S-100 protein in the cerebral cortex with regard to the cause of death in forensic autopsy. Leg Med (Tokyo). 2006;8(2):78–85.

    Article  CAS  Google Scholar 

  78. Osuna E, Perez-Carceles MD, Luna A, Pounder DJ. Efficacy of cerebro-spinal fluid biochemistry in the diagnosis of brain insult. Forensic Sci Int. 1992;52(2):193–8.

    Article  CAS  Google Scholar 

  79. Vazquez MD, Sanchez-Rodriguez F, Osuna E, Diaz J, Cox DE, Perez-Carceles MD, et al. Creatine kinase BB and neuron-specific enolase in cerebrospinal fluid in the diagnosis of brain insult. Am J Forensic Med Pathol. 1995;16(3):210–4.

    Article  CAS  Google Scholar 

  80. Nogami M, Takatsu A, Ishiyama I. Immunohistochemical study of neuron-specific enolase in human brains from forensic autopsies. Forensic Sci Int. 1998;94(1–2):97–109.

    Article  CAS  Google Scholar 

  81. Rainio J, De Giorgio F, Bortolotti F, Tagliaro F. Objective post-mortem diagnosis of chronic alcohol abuse—a review of studies on new markers. Leg Med (Tokyo). 2008;10(5):229–35.

    Article  CAS  Google Scholar 

  82. Michiue T, Ishikawa T, Kawamoto O, Chen JH, Wang Q, Zhu BL, et al. Postmortem serum levels of amylase and gamma glutamyl transferase (GGT) as markers of systemic tissue damage in forensic autopsy. Leg Med (Tokyo). 2013;15(2):79–84.

    Article  CAS  Google Scholar 

  83. Palmiere C, Mangin P. Urea nitrogen, creatinine, and uric acid levels in postmortem serum, vitreous humor, and pericardial fluid. Int J Legal Med. 2015;129(2):301–5.

    Article  Google Scholar 

  84. Ishikawa T, Quan L, Li DR, Zhao D, Michiue T, Hamel M, et al. Postmortem biochemistry and immunohistochemistry of adrenocorticotropic hormone with special regard to fatal hypothermia. Forensic Sci Int. 2008;179(2–3):147–51.

    Article  CAS  Google Scholar 

  85. Ishikawa T, Michiue T, Quan L, Zhao D, Komatsu A, Bessho Y, et al. Morphological and functional alterations in the adenohypophysis in cases of brain death. Leg Med (Tokyo). 2009;11(Suppl 1):S234–7.

    Article  Google Scholar 

  86. Ishikawa T, Michiue T, Maeda H. Evaluation of postmortem serum and cerebrospinal fluid growth hormone levels in relation to the cause of death in forensic autopsy. Hum Cell. 2011;24(2):74–7.

    Article  Google Scholar 

  87. Ishikawa T, Michiue T, Zhao D, Komatsu A, Azuma Y, Quan L, et al. Evaluation of postmortem serum and cerebrospinal fluid levels of thyroid-stimulating hormone with special regard to fatal hypothermia. Leg Med (Tokyo). 2009;11(Suppl 1):S228–30.

    Article  Google Scholar 

  88. Edston E, Druid H, Holmgren P, Ostrom M. Postmortem measurements of thyroid hormones in blood and vitreous humor combined with histology. Am J Forensic Med Pathol. 2001;22(1):78–83.

    Article  CAS  Google Scholar 

  89. Palmiere C, Tettamanti C, Scarpelli MP, Rousseau G, Egger C, Bongiovanni M. Postmortem biochemical investigation results in situations of fatal mechanical compression of the neck region. Leg Med (Tokyo). 2018;30:59–63.

    Article  CAS  Google Scholar 

  90. Palmiere C, Bardy D, Letovanec I, Mangin P, Augsburger M, Ventura F, et al. Biochemical markers of fatal hypothermia. Forensic Sci Int. 2013;226(1–3):54–61.

    Article  CAS  Google Scholar 

  91. Senol E, Demirel B, Akar T, Gulbahar O, Bakar C, Bukan N. The analysis of hormones and enzymes extracted from endocrine glands of the neck region in deaths due to hanging. Am J Forensic Med Pathol. 2008;29(1):49–54.

    Article  Google Scholar 

  92. Tamaki K, Katsumata Y. Enzyme-linked immunoabsorbent assay for plasma thyroglobulin following compression of the neck. Forensic Sci Int. 1990;44(2–3):193–201.

    Article  CAS  Google Scholar 

  93. Dressler J, Mueller E. High thyroglobulin (Tg) concentrations in fatal traumatic brain injuries. Am J Forensic Med Pathol. 2006;27(3):280–2.

    Article  CAS  Google Scholar 

  94. Sawaguchi A, Funao T. Changes in blood glucose and related hormones in experimental asphyxia. Kitasato Med J. 1976;6:238–344.

    Google Scholar 

Download references

Acknowledgments

This paper is a restructured and summarized version of the paper “Contribution of Postmortem Biochemistry in Forensic Pathological Investigation of Death,” published in the Japanese Journal of Forensic Pathology in 2012, which summarizes the content of research done by our department to date. We would like to express our deep gratitude to Dr. Hitoshi Maeda, Professor Emeritus at Osaka City University, who kindly offered us the opportunity to engage in this research to complete this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikeda, T., Tani, N., Michiue, T., Ishikawa, T. (2019). Forensic Biochemistry. In: Ishikawa, T. (eds) Forensic Medicine and Human Cell Research. Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-2297-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2297-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2296-9

  • Online ISBN: 978-981-13-2297-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics