Skip to main content

Current Approaches and Key Applications of Plant Metabolic Engineering

  • Chapter
  • First Online:

Abstract

The diversion of carbon flux toward biosynthesis of targeted products could be achieved by manipulation of targeted biosynthesis pathway in plants. This whole process consists of many steps in stepwise manners starting with the identification and isolation of targeted metabolites, elucidation of complete biosynthetic pathway for identification of point of intervention, discovery of corresponding potential metabolic genes, and overexpression of the selected genes in heterologous system and collectively production of the metabolites. The various biochemical processes including transcriptome, translatome, proteome, and reactome are being used to assist metabolic engineering by providing new insights into novel pathways or bottlenecks of existing pathways. Apart from all these, in-depth understanding of metabolic fluxes and feedback regulations is also mandatory for plant metabolic engineering. All these different current approaches are collectively considered for investigating the plant metabolic engineering to understand, reconstruct, analyze, and annotate the targeted pathways. The key applications of plant metabolic engineering have been compiled with a few important applications including improvement of nitrogen utilization in plant, development of highly nutritive food, and generation of biofuel production. In conclusion, the plant metabolic engineering could provide comprehensive evaluation of manipulation of biosynthetic pathways for numerous applications. This compiled information could act as a resource for crop breeding and biotechnology purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

RBS:

Ribosomal binding site

NNAAs:

Nonnatural amino acids

ORF:

Open reading frame

TAG:

Triacylglycerol

References

  • Adrio J-L, Demain AL (2010) Recombinant organisms for production of industrial products. Bioeng Bugs 1:116–131

    Article  Google Scholar 

  • Boisnard S, Espagne E, Zickler D, Bourdais A, Riquet AL, Berteaux-Lecellier V (2009) Peroxisomal ABC transporters and β-oxidation during the life cycle of the filamentous fungus Podospora anserine. Fungal Genet Biol 46:55–66

    Article  CAS  Google Scholar 

  • Booth SC, Weljie AM, Turner RJ (2013) Computational tools for the secondary analysis of metabolomics experiments. Comput Struct Biotechnol J 4:e201301003

    Article  Google Scholar 

  • Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochemistry 68:1855–1863

    Article  CAS  Google Scholar 

  • Broadwater JA, Whittle E, Shanklin J (2002) Desaturation and hydroxylation. Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem 277:15613–15620

    Article  CAS  Google Scholar 

  • Campodonico MA, Andrews BA, Asenjo JA, Palsson BO, Feist AM (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-path. Metab Eng 25:140–158

    Article  CAS  Google Scholar 

  • Cánovas FM, Gallardo F, Jing ZP, Pascual MB (2006) Transgenic approaches to engineer nitrogen metabolism. In: Fladung M, Ewald D (eds) Tree transgenesis. Springer, Berlin/Heidelberg

    Google Scholar 

  • Chung BKS, Selvarasu S, Camattari A, Ryu J, Lee H, Ahn J, Lee H, Lee D-Y (2010) Genome-scale metabolic reconstruction and in-silico analysis of methylotropic yeast Pichia pastoris for strain improvement. Microb Cell Factories 9:50

    Article  Google Scholar 

  • Curien G, Bastien O, Robert-Genthon M, Cornish-Bowden A, Cárdenas ML, Dumas R (2009) Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol Syst Biol 5:271

    Article  Google Scholar 

  • Du J, Shao Z (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890

    Article  CAS  Google Scholar 

  • Erb TJ, Jones PR, Bar-Even A (2017) A. Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol 37:56–62

    Article  CAS  Google Scholar 

  • Faure G, Ogurtsov AY, Shabalinam SA, Koonin EV (2016) Role of mRNA structure in the control of protein folding. Nucleic Acids Res 44:10898–10911

    Article  CAS  Google Scholar 

  • Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145

    Article  CAS  Google Scholar 

  • Gonzalez-Ramos D, Cebollero E, Gonzalez R (2008) A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilize wine against protein haze. Appl Environ Microbiol 74:5533–5540

    Article  CAS  Google Scholar 

  • Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609

    Article  CAS  Google Scholar 

  • He F, Murabito E, Westerhoff H (2017) Synthetic biology and regulatory: where metabolic systems biology meets control engineering. J R Soc Interface 13:20151046

    Article  Google Scholar 

  • Hudson WH, Ortlund EA (2014) The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 15:749–760

    Article  CAS  Google Scholar 

  • Jacobson MP, Kalyanaraman C, Zhao S, Tian B (2014) Leveraging structure for enzyme function prediction: methods, opportunities and challenges. Trends Biochem Sci 39:363–371

    Article  CAS  Google Scholar 

  • Jing LS, Shah FFM, Mohamad MS, Hamran NL, Mohamed S, Debris S, Alashwal H (2014) Database and tools for metabolic network analysis. Biotechnol Bioprocess Eng 19:568–585

    Article  CAS  Google Scholar 

  • Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ (2016) The developmental transcriptome atlas of the biofuel crop Camelina Sativa. Plant J 88:879–894

    Article  CAS  Google Scholar 

  • Karhumaa K, Hahn-Hagerdahl B, Gorwa-Grauslund MF (2005) Investigation of the limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  CAS  Google Scholar 

  • Kosuri S, Goodman DB, Cambray G, Mutalik VK, Gao Y, Arkin AP, Endy D, Church GM (2013) Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci U S A 110:14024–14029

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2017) Transgenic tobacco overexpressing dihydroflavonol reductase and anthocyanidin reductase showed improved flavan-3-ols contents and tolerance against biotic and abiotic stress conditions. 3Biotech 7:177

    Google Scholar 

  • Lanza AM, Curran KA, Rey LG, Alper HS (2014) A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Sys Biol 8:33

    Article  Google Scholar 

  • Lau W, Fischbach MA, Osboun A, Sattely ES (2014) Key applicatons of plant metabolic engineering. PLoS Biol 12:e1001879

    Article  Google Scholar 

  • Lechner A, Brunk E, Keasling JD (2017) The need for integrated approaches in metabolic engineering. Cold Spring Harb Perspect Biol 8:a023903

    Article  Google Scholar 

  • Lee JH, Jung S-K, Bui LM, Kang KH, Song J-J, Kim SC (2013) Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system. Appl Environ Microbiol 79:774–782

    Article  CAS  Google Scholar 

  • Leonard E, Ajikumar PK, Thayer K, Xiao W-H, Mo JD, Tidor B, Stephanopoulos G, Prather KLJ (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci U S A 107:13654–13659

    Article  CAS  Google Scholar 

  • Long SP, Marshall-Colon A, Zhu X-G (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66

    Article  CAS  Google Scholar 

  • Luo Y, Enghiad B, Zhao H (2016) New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters. Nat Prod Rep 33:174–182

    Article  CAS  Google Scholar 

  • Makino T, Skretas G, Georgiou G (2011) Staining engineering for improved expression of recombinant proteins in bacteria. Microb Cell Fac 10:32

    Article  CAS  Google Scholar 

  • Maudsley S, Chadwick W, Wang L, Zhou Y, Martin B, Park S-S (2011) Bioinformatic approaches to metabolic pathways analysis. Methods Mol Biol 756:99–130

    Article  CAS  Google Scholar 

  • Moses T, Pollier J, Thevelein JM, Goossens A (2013) Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 1:27–43

    Article  Google Scholar 

  • Napier JA, Haslam RP, Beaudoin F, Cahoon EB (2014) Understanding and manipulating plant lipid composition metabolic engineering leads the way. Curr Opin Plant Biol 19:68–75

    Article  CAS  Google Scholar 

  • Newhouse T, Baran PS, Hoffmann RW (2009) The economics of synthesis. Chem Soc Rev 38:3010–3021

    Article  CAS  Google Scholar 

  • Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang W, Nazarenus TJ, Nam JW, Jaworski JG, Lu C, Scheffler BE (2013) Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11:759–769

    Article  CAS  Google Scholar 

  • Ortiz-Marquez JCF, Nascimento MD, de los Dublan M, Curati A (2012) Association with an ammonium-excreting bacterium allows diazotrops culture of oil-rich eukaryotic microalgae. Appl Environ Microbiol 78:2345–2352

    Article  CAS  Google Scholar 

  • Pandey A, Misra P, Choddhary D, Yadav R, Goel R, Bhanbhani S, Sanyal I, Trivedi R, Trivedi PK (2015) AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues. Sci Rep 5:12412

    Article  Google Scholar 

  • Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in-silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  CAS  Google Scholar 

  • Pascual MB, El-Azaz J, de la Torre FN, Cañas RA, Avilla C, Cánovas (2016) Biosynthesis and metabolic fate of phenylalanine in conifers. Front Plant Sci 7:1030

    Google Scholar 

  • Payne SH (2015) The utility of protein and mRNA correlation. Trends Biochem Sci 40:1–3

    Article  CAS  Google Scholar 

  • Pérez-Delgado CM, García-Calderón M, Márquez AJ, Betti M (2016) Reassimilation of photorespiratory ammonium in Lotus japonicus plants deficient in plastidic glutamine synthetase. PLoS One 11:e0156568

    Article  Google Scholar 

  • Pickens LB, Tang Y, Chooi Y-H (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236

    Article  CAS  Google Scholar 

  • Prosser GA, Larrouy-Maumus G, de Carvalho LPS (2014) Metabolic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep 15:657–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148

    Article  CAS  Google Scholar 

  • Ruiz-López N, Haslam RP, Venegas-Calerón M, Li T, Bauer J, Napier JA, Sayanova O (2012) Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Trans Res 21:1233–1243

    Article  Google Scholar 

  • Ruiz-Lopez N, Broughton R, Usher S, Salas JJ, Haslam RP, Napier JA, Beaudoin F (2017) Tailoring the composition of novel wax esters in the seeds of transgenic Camelina sativa through systematic metabolic engineering. Plant Biotechnol 15:837–849

    Article  CAS  Google Scholar 

  • Stiller I, Dancs G (2007) Increasing the nutritive value of potato by metabolic engineering of cysteine content. Acta Aliment 37:103. https://doi.org/10.1556/AAlim.2007.0021

    Article  CAS  Google Scholar 

  • Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, D’Ambrogio A, Luscombe NM, Ule J (2015) hiCLIP reveals the in-vivo atlas of mRNA secondary strcutures recognized by Staufen 1. Nature 519:419–494

    Article  Google Scholar 

  • Tatsis EC, Connor SEO (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132

    Article  CAS  Google Scholar 

  • Tobias JE, Jones PR, Bar-Even A (2017) Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol 37:56–62

    Google Scholar 

  • Van Acker R, Leple J-C, Aerts D, Storme V, Goeminne G, Ivens B, Legee F et al (2014) Improved saccharification ans ethanol yield form field-grown transgenic poplar deficient in cinnamoyl-CoA redcutase. Proc Natl Acad Sci U S A 111:845–850

    Article  Google Scholar 

  • Vanhercke T, Tahchy AE, Liu Q, Zhou X-R, Shrestha P, Divi UK, Ral J-P, Mansour MP et al (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12:231–239

    Article  CAS  Google Scholar 

  • Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J et al (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90–99

    Article  CAS  Google Scholar 

  • Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loque D (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325–335

    Article  CAS  Google Scholar 

  • Ye VM, Bhatia SK (2012) Metabolic engineering strategies for the production of beneficial carotenoids in plants. Food Sci Biotechnol 21:1511–1517

    Article  Google Scholar 

  • Yoshikuni Y, Dietrich JA, Nowroozi FF, Babbitt PC, Keasling JD (2008) Redesigning enzymes based on adaptive evolution for optimal function in synthetic metabolic pathways. Chem Biol 15:607–618

    Article  CAS  Google Scholar 

  • Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, Chen X, Wu H, Candreva J, Zhai Z, Shanklin J, Altpeter F (2016) Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotechnol J 14:661–669

    Article  CAS  Google Scholar 

  • Zhang H, Chong H, Ching CB, Song H, Jiang R (2012) Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol 94:1107–1117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, Reetu, Kumar, V. (2018). Current Approaches and Key Applications of Plant Metabolic Engineering. In: Yadav, S., Kumar, V., Singh, S. (eds) Recent Trends and Techniques in Plant Metabolic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2251-8_3

Download citation

Publish with us

Policies and ethics