Skip to main content

State-of-the-Art in UVs’ Autonomous Motion Planning

  • Chapter
  • First Online:
Autonomy and Unmanned Vehicles

Abstract

Autonomous mission management is closely related to the accuracy of the navigation system. Path planning is an essential component in the UV’s development, which determines the vehicle’s level of autonomy in dealing with environmental changes and it is considered as a premise of mission reliability and success Statheros et al. (J Navig 61:129–142, 2008 [1]). One primary concern for autonomy is the advancement of the navigation system, including trajectory/path planning, to be robust to the extreme environmental variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Statheros T, Howells G, Howells G, McDonald-Maier K (2008) Autonomous ship collision avoidance navigation concepts, technologies and techniques. J Navig 61(1):129–142

    Article  Google Scholar 

  2. MahmoudZadeh S, Yazdani A, Sammut K, Powers DMW (2017) Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms. J Appl Soft Comput. https://doi.org/10.1016/j.asoc.2017.10.025

    Article  Google Scholar 

  3. Breivik M, Fossen TI (2007) Applying missile guidance concepts to motion control of marine craft. IFAC Proc Vol (IFAC-PapersOnline)

    Google Scholar 

  4. Alvarez A, Caiti A, Onken R (2004) Evolutionary path planning for autonomous underwater vehicles in a variable ocean. Oceanic Eng 29(2):418–429

    Article  Google Scholar 

  5. Smierzchalski R (1999) Evolutionary trajectory planning of ships in navigation traffic areas. J Mar Sci Technol 4:1–6

    Article  Google Scholar 

  6. Kanayama Y, Yuta S (1988) Vehicle path specification by a sequence of straight lines. IEEE J Robot Autom 4(3):265–276

    Article  Google Scholar 

  7. Dubins LE (1957) On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am J Math 497–516

    Google Scholar 

  8. Bakolas E, Tsiotras P (2013) Optimal partitioning for spatiotemporal coverage in a drift field. Automatica 49(7):2064–2073

    Article  MathSciNet  Google Scholar 

  9. Tsourdos A, White B (2010) Cooperative path planning of unmanned aerial vehicles. Wiley. https://doi.org/10.1002/9780470974636

  10. Wagner P, Kordas J, Michna V, Kotzian J (2010) Motion control for robots based on cubic hermite splines in real-time. IFAC Proc Vol 43(24):150–155

    Article  Google Scholar 

  11. MahmoudZadeh S, Powers DMW, Yazdani A, Sammut K, Atyabi A (2018) Differential evolution for efficient auv path planning in time variant uncertain underwater environment. Proc J Mar Sci Appl (JMSA). https://arxiv.org/abs/1604.02523

  12. Tovar B, Murrieta-Cid R, LaValle SM (2007) Distance-optimal navigation in an unknown environment without sensing distances. IEEE Trans Rob 23(3):506–518

    Article  Google Scholar 

  13. Pereira AA, Binney J, Hollinger GA, Sukhatme GS (2013) Risk-aware path planning for autonomous underwater vehicles using predictive ocean models. J Field Robot 30(5):741–762

    Article  Google Scholar 

  14. Eichhorn M (2015) Optimal routing strategies for autonomous underwater vehicles in time-varying environment. Robot Auton Syst 67:33–43

    Article  Google Scholar 

  15. Li Y, He R, Guo Y (2006) Faster genetic algorithm for network paths. In: The 6th International symposium on operations research and applications, pp 380–389

    Google Scholar 

  16. Likhachev M, Ferguson D, Gordon G, Stentz A, Thrun S (2005) Anytime dynamic a*: An anytime, replanning algorithm. In: The 15th International conference on automated planning and scheduling, pp 262–271

    Google Scholar 

  17. Carroll KP, McClaran SR, Nelson EL, Barnett DM, Friesen DK, William GN (1992) AUV path planning: an A* approach to path planning with consideration of variable vehicle speeds and multiple, overlapping, time-dependent exclusion zones. In: The Symposium on autonomous underwater vehicle technology

    Google Scholar 

  18. Perdomo EF, Gamez JC, Sosa DH, Gonzalez JI, Brito AD, Redondo A, Coca J, Ramos AG, Fanjul EA, Garcia M (2010) Path planning for gliders using regional ocean models: application of Pinzon path planner with the ESEOAT model and the RU27 trans-Atlantic flight data. IEEE Ocean, Australia

    Google Scholar 

  19. Carsten J, Ferguson D, Stentz A (2006) 3D field D*: improved path planning and replanning in three dimensions. In: IEEE international conference on intelligent robots and systems, pp 3381–3386

    Google Scholar 

  20. Petres C, Pailhas Y, Petillot Y, Lane D (2005) Underwater path planning using fast marching algorithms. Ocean Eur 2:814–819

    Google Scholar 

  21. Petres C, Pailhas Y, Patron P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE Trans Rob 23(2):331–341

    Article  Google Scholar 

  22. Soulignac M (2011) Feasible and optimal path planning in strong current fields. IEEE Trans Rob 27(1):89–98

    Article  Google Scholar 

  23. Petres C, Patron P (2005) Path planning for unmanned underwater vehicles. In: IJCAI 2005 workshop on planning and learning in a priori unknown or dynamic domains, pp 47–54

    Google Scholar 

  24. Mirebeau JM (2014) Anisotropic fast-marching on cartesian grids using lattice basis reduction. J Numer Anal 52:1573–1599

    Article  MathSciNet  Google Scholar 

  25. Sequeira J, Ribeiro MI (1996) AUV path planning under current constraints. Autonomous Underwater Vehicles, Kluwer Publishers

    Google Scholar 

  26. Garau B, Alvarez A, Oliver G (2005) Path planning of autonomous underwater vehicles in current fields with complex spatial variability: an A* approach. In: IEEE International conference on robotics and automation

    Google Scholar 

  27. Alexandrescu A, Kirchhoff K (2009) Graph-based learning for statistical machine translation human language technologies. In: The 2009 annual conference of the north american chapter of the ACL, Boulder, Colorado, pp 119–127

    Google Scholar 

  28. Sorbi L, Capua GPD, Toni L, Fontaine JG (2011) Target detection and recognition: a mission planner for autonomous underwater vehicles. In: IEEE Ocean MTS/ KONA, pp 1–5

    Google Scholar 

  29. Witt J, Dunbabin M (2008) Go with the flow: optimal AUV path planning in coastal environments. In: Australasian conference on robotics and automation

    Google Scholar 

  30. Warren CW (1990) Technique for autonomous underwater vehicle route planning. IEEE J Oceanic Eng 15(3):199–204

    Article  Google Scholar 

  31. Kruger D, Stolkin R, Blum A, Briganti J (2007) Optimal AUV path planning for extended missions in complex, fast flowing estuarine environments. In: IEEE International conference on robotics and automation, Italy, pp 4265–4270

    Google Scholar 

  32. Cheng C, Zhu D, Sun B, Chu Z, Nie J, Zhang S (2015) Path planning for autonomous underwater vehicle based on artificial potential field and velocity synthesis. In: IEEE 28th Canadian conference on electrical and computer engineering, Canada, pp 132–141

    Google Scholar 

  33. Andrews JR, Hogan N (1983) Impedance control as a framework for implementing obstacle avoidance in a manipulator. Control of manufacturing processes and robotic systems, Book, W. ASME, Boston, pp 243–251

    Google Scholar 

  34. Wu P, Xie S, Luo J, Li Q (2015) The USV path planning based on the combinatorial algorithm. April Revista Tecnica de la Facultad de Ingeniería Universidad del Zulia, 38(1):62–70

    Google Scholar 

  35. Roberge V, Tarbouchi M, Labonte G (2013) Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans Industr Inf 9(1):132–141

    Article  Google Scholar 

  36. Zhang Q (2006) A hierarchical global path planning approach for AUV based on genetic algorithm. In: IEEE International conference on mechatronics and automation, China, pp 1745–1750

    Google Scholar 

  37. Rubio JC, Kragelund S (2003) The trans-pacific crossing: long range adaptive path planning for UAVs through variable wind fields. In: Digital avionics systems conference, pp 81–12

    Google Scholar 

  38. He P, Dai S (2014) Stealth real-time paths planning for heterogeneous UAV formation based on parallel niche genetic algorithm. J Comput Inf Syst 10(15):6731–6740

    Google Scholar 

  39. Ataei M, Yousefi-Koma A (2014) Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle. Robot Auton Syst

    Google Scholar 

  40. Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. Evolutionary Programming, Springer, pp 611–616

    Google Scholar 

  41. Zamuda A, Sosa JDH (2014) Differential evolution and underwater glider path planning applied to the short-term opportunistic sampling of dynamic mesoscale ocean structures. Appl Soft Comput 24:95–108

    Article  Google Scholar 

  42. Yazdani AM, Sammut K, Yakimenko OA, Lammas A, MahmoudZadeh S, Tang Y (2017) IDVD-Based trajectory generator for autonomous underwater docking operations. Robot Auton Syst 92:1–29

    Article  Google Scholar 

  43. Yazdani AM, Sammut K, Yakimenko OA, Lammas A, MahmoudZadeh S, Tang Y (2016) Time and energy efficient trajectory generator for autonomous underwater vehicle docking operations. IEEE Oceans MTS, USA, pp 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MahmoudZadeh, S., Powers, D.M.W., Bairam Zadeh, R. (2019). State-of-the-Art in UVs’ Autonomous Motion Planning. In: Autonomy and Unmanned Vehicles. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2245-7_3

Download citation

Publish with us

Policies and ethics