Skip to main content

Heavy Metal Toxicity and Antioxidative Response in Plants: An Overview

  • Chapter
  • First Online:
Plants Under Metal and Metalloid Stress

Abstract

Environmental pollution caused by heavy metals has received worldwide attention. The intractable and pertinacious nature of heavy metals leads to severe threat to environment, and affects the life of both plants and animals, causing serious diseases in humans. Heavy metal toxicity in plants cause imbalances in the redox metabolism that leads to oxidative damage which is characterized by enhanced production of reactive oxygen species (ROS). To minimize the deleterious consequences of ROS, plants in general have developed biological detoxification and defense mechanisms that protect the cellular components from being oxidized. Antioxidative defense activity of plants is composed of enzymatic scavengers such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPX) and non-enzymatic components like ascorbic acid (AA), α-tocopherol, carotenoids, flavonoids and proline that plays the most crucial and effective role in detoxifying ROS and the changes in their activity is often used to predict metal tolerance. In this chapter, the current state of knowledge about the role of ROS, defense mechanisms and adaptation strategies of plants with special reference to antioxidative defense system to alleviate heavy metal toxicity is discussed. Recent researches have thrown ample lights on how enzymatic and non-enzymatic machinery of plants can protect, regulate and integrate cell responses to heavy metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (2003) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York, pp 1–6

    Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defences. Free Radic Biol Med 23:473–479

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ, Ayres DC (1997) Chemical principles of environmental pollution, 2nd edn. CRC Press, London, p 395

    Google Scholar 

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L: a free-floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Google Scholar 

  • Arisi ACM, Mocquot B, Mench M, Foyer CH, Jouanian L (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol Plant 109:143–149

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell NR, Sternberg PKS, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol 89:41–48

    Article  CAS  PubMed  Google Scholar 

  • Badiye A, Kapoor N, Khajuria H (2013) Copper toxicity: a comprehensive study. Res J Recent Sci 2:58–67

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements- a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–108

    Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol 28:497–504

    CAS  Google Scholar 

  • Barcelo J, Poschenrieder C, Andreu I, Gunse B (1986) Cadmium induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender) I. Effect of Cd on water potential, relative water content, and cell wall elasticity. J Plant Physiol 125:17–25

    Article  CAS  Google Scholar 

  • Barnes J, Zheng Y, Lyons T (2002) Plant resistance to zone: the role of ascorbate. In: Omasa KH, Saji S, Youssefian N (eds) Air pollution and plant biotechnology – prospects for phytomonitoring and phytoremediation. Springer, Tokyo, pp 235–252

    Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brasica napus) grown on cadmium polluted soil: cause and consequences for photosynthesis and growth. Planta 212:696–709

    Article  CAS  PubMed  Google Scholar 

  • Baszynski T, Wajda L, Krol M, Wolinska D, Krupa A, Tuken–Dorf (1980) Photosynthetic activities of cadmium–treated tomato plants. Physiol Plant 48:365–370

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31(3):860–865

    Article  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–462

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Cai-lin GE, Yang X, Yang J (2003) Effect of heavy metal stress on different rice varieties of superoxide dismutase. Acta Agric Nucleatae Sin 17(4):286–291

    Google Scholar 

  • Chaney RL, Angle JS, Li YM, Baker AJM (1999) Method for phytomining of nickel, cobalt and other metals from soil. US Patent 5,944,872, 27 Jan

    Google Scholar 

  • Chang TC, You SJ, Yu BS, Chen CM, Chiu YC (2009) Treating high-mercury-containing lamps using fullscale thermal desorption technology. J Hazard Mater 162:967–972

    Article  CAS  PubMed  Google Scholar 

  • Che D, Meagher R, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Zeng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  CAS  PubMed  Google Scholar 

  • Cho U, Seo N (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Cleland RE, Grace SC (1999) Voltammetric detection of superoxide production by photosystem II. FEBS Lett 457:348–352

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  CAS  PubMed  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza R, Varun M, Pratas J, Paul MS (2013) Spatial distribution of heavy metals in soil and flora associated with the glass industry in North Central India: implications for phytoremediation. Soil Sediment Contam 22:1–20

    Article  CAS  Google Scholar 

  • Davis LC, Castro-Diaz S, Zhang Q, Erickson LE (2002) Benefits of vegetation for soils with organic contaminants. Crit Rev Plant Sci 21:457–491

    Article  CAS  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova ZP, Feller U (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr 29:451–468

    Article  CAS  Google Scholar 

  • Djingova R, Kuleff I (2000) Instrumental techniques for trace analysis. In: Vernet JP (ed) Trace elements: their distribution and effects in the environment. Elsevier, London

    Google Scholar 

  • Dursun K, Elmastaş M, Ozturk L, Kayır O (2016) Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem 59:813–820

    Article  CAS  Google Scholar 

  • Ebinghaus R, Tripathi RM, Wallschläger LSE (1999) Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales. In: Ebinghaus R, Turner RR, Lacerda LD, Vasiliev O, Salomons W (eds) Mercury contaminated sites: characterization, risk assessment and remediation. Springer, New York

    Chapter  Google Scholar 

  • Eick MJ, Peak JD, Brady PV, Pasak JD (1999) Kinetics of lead absorption and desorption on goethite: residence time effect. Soil Sci 164:28–39

    Article  CAS  Google Scholar 

  • Elinder CG (1985) Cadmium: uses, occurrence, and intake. In: Friberg L, Elinder CG, Kjellstrom T (eds) Cadmium and health: a toxicological and epidemiological appraisal. CRC Press, Boca Raton, pp 24–63

    Google Scholar 

  • Elstner EF (1991) Mechanism of oxygen activation in different compartments. In: Pell EJ, Steffen KL (eds) Active oxygen/oxidative stress and plant metabolism. American Socienty of Plant Physiologists, Roseville, pp 13–25

    Google Scholar 

  • EPA (2004) National priorities list for Smalley-Piper. US Environmental Protection Agency, Collierville http://www.epa.gov/superfund/sites/npl/nar1727.htm

    Google Scholar 

  • Falandysz J, Lipka K, Kawano M, Brzostowski A, Dadej M, Jedrusiak A, Puzyn T (2003) Mercury content and its bioconcentration factors in wild mushrooms at Lukta and Morag, northeastern Poland. J Agric Food Chem 51:2832–2836

    Article  CAS  PubMed  Google Scholar 

  • Fini A, Brunettii C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress induced Flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontes RLF, Cox FR (1995) Effects of sulfur supply on soybean plants exposed to zinc toxicity. J Plant Nutr 18:1893–1906

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic contaminated soils. Sci Total Environ 284:27–35

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, Rosa GD, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Environ Health Perspect 249:1797–1810

    CAS  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:8–96

    Article  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  PubMed  Google Scholar 

  • Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata. A new model system for analysis of arsenic hyperaccumulation. Plant Physiol 36:3198–3208

    Article  Google Scholar 

  • Guo T, Zhang G, Zhou M, Wu F, Chen J (2004) Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant Soil 258:241–248

    Article  CAS  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 90:1629–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haag-Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50:1827–1835

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Harinasut P, Poonsopa D, Roengmongkol K, Charoensataporn R (2003) Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia 29:109–113

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Mary V, Schopfer P, Krieger-Liszkay A (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45

    Article  CAS  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. J Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147:806–816

    Article  CAS  PubMed  Google Scholar 

  • Jackson C, Dench J, Moore AL, Halliwell B, Foyer CH, Hall DO (1978) Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. Eur J Biochem 91:339–344

    Article  CAS  PubMed  Google Scholar 

  • Jadia CD, Fulekar MH (1999) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol l8:921–928

    Google Scholar 

  • Janas KM, Amarowicz R, Zielinska-Tomaszewska J, Kosinśka A, Posmyk MM (2009) Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiol Plant 31:587–595

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kacabova P, Natr L (1986) Effect of Pb on growth characteristics and chlorophyll content in barley seedlings. Phosynthetica 20:411–417

    CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Article  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan NA, Samiullah, Singh S, Naza R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  • Khurana N, Chatterjee C (2001) Influence of variable zinc on yield, seed oil content, and physiology of sunflower. Soil Sci Plant Ann 32:3023–3030

    Article  CAS  Google Scholar 

  • Krieger-Liszkay (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Leon AM, Palma JM, Corpas FJ, Gomez M, Romero-Puertas MC, Chatterjee D, Mateos RM, del Rio LA, Sandalio LM (2002) Antioxidant enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40:813–820

    Article  CAS  Google Scholar 

  • Li Y, Song Y, Shi G, Wang J, Hou X (2009) Response of antioxidant activity to excess copper in two cultivars of Brassica campestris ssp. chinensis Makino. Acta Physiol Plant 31:55–162

    Article  CAS  Google Scholar 

  • Liao S, Chang N (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manag 42:60–68

    Google Scholar 

  • Lösch R (2004) Plant mitochondrial respiration under the influence of heavy metals. In: Prasad MNV (ed) Heavy metal stress in plants from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 182–200

    Chapter  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, pp 24–28

    Google Scholar 

  • Massa N, Andreucci F, Poli M, Aceto M, Barbato R, Berta G (2010) Screening for heavy metal accumulators amongst autochthonous plants in a polluted site in Italy. Ecotoxicol Environ Saf 73:1988–1997

    Article  CAS  PubMed  Google Scholar 

  • McArthur J, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  CAS  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123

    CAS  PubMed  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    CAS  PubMed  Google Scholar 

  • Minnich MM, McBride MB, Chaney RL (1987) Copper activity in soil solution. II. Relation to copper accumulation in young snap beans. Soil Sci Soc Am J 51:573–578

    Article  CAS  Google Scholar 

  • Mitchell RL, Burchett MD, Pulkownik A, McCluskey L (1988) Effects of environmentally hazardous chemicals on the emergence and early growth of selected Australian native plants. Plant Soil 112:195–199

    Article  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Molina AS, Nievas C, Chaca MVP, Garibotto F, González U, Marsá SM, Luna C, Giménez MS, Zirulnik F (2008) Cadmium-induced oxidative damage and antioxidative defense mechanisms in Vigna mungo L. Plant Growth Regul 56:285–295

    Article  CAS  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jaquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    Article  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Paepe RD, Foyer CH (2006) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  CAS  Google Scholar 

  • Nouet C, Motte P, Hanikenne M (2011) Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci 16(7):395–404

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan JN, Asher CJ, Blamey FPC (1997) Nutrient disorders of sweet potato, ACIAR monograph no. 48. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Ottabbong E (1989) Chemistry of Cr in some Swedish soil: 2. Fate and impact of added Cr on pH and status of soluble Mn in four soils. Acta Agric Scand 39:131–138

    Article  Google Scholar 

  • Paivoke H (1983) The short term effect of Zn on the growth anatomy and acid phosphate activity of pea seedlings. Ann Bot 20:307–309

    CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Rio LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Patterson W, Olson JJ (1983) Effects of heavy metals on radicle growth of selected woody species germinated on filter paper, mineral and organic soil substrates. Can J For Res 13:233–238

    Article  CAS  Google Scholar 

  • Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographic area. New Phytol 159:421–430

    Article  CAS  PubMed  Google Scholar 

  • Pekker I, Tel-or E, Mittler R (2002) Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidase during iron mediated oxidative stress in bean. Plant Mol Biol 49:429–438

    Article  CAS  PubMed  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    Article  CAS  PubMed  Google Scholar 

  • Phillips DA (1981) Chemistry and biochemistry of trace metals in biological systems. In: Lepp NW (ed) Effect of heavy metal pollution on plants, vol 1. Applied Science Publishers, London

    Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poskuta JW, Parys E, Romanovska E (1987) Effects of lead on the gaseous exchange and photosynthetic carbon metabolism of pea seedlings. Acta Bot Soc Poland 57:149–155

    Article  Google Scholar 

  • Pulford I, Watson C, McGregor SD (2001) Uptake of chromium by trees: prospects for phytoremediation. Environ Geochem Health 23:307–311

    Article  CAS  Google Scholar 

  • Racchi ML, Bagnoli F, Balla I, Danti S (2001) Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.). Plant Cell Rep 20:169–174

    Article  CAS  PubMed  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson G, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60

    Article  CAS  PubMed  Google Scholar 

  • Ren F, Liu T, Liu H, Hu B (1993) Influence of zinc on the growth, distribution of elements, and metabolism of one-year old American ginseng plants. J Plant Nutr 16:393–405

    Article  CAS  Google Scholar 

  • Romero MC, Corpas FJ, Rodrıguez-Serrano M, Gomez M, del Rio LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    Article  CAS  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    Article  PubMed  Google Scholar 

  • Salim RM, Isa MM, Subu AL, Sayrafi SA, Sayrafi O (1995) Effect of irrigation with lead and cadmium on the growth and metal uptake of cauliflower, spinach and parsley. J Environ Sci Health Part A 30:831–849

    Google Scholar 

  • Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Małkowski E, Gray L (2008) Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ Monit Assess 137:101–109

    Article  CAS  PubMed  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defences. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Senger R, Gautam S, Garg SK, Senger K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:1–21

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Adholeya A (2011) Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyceslilacinus fungi. Int Biodeterior Biodegrad 65:309–317

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2010) Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop stress. CRC Press, Boca Raton, pp 89–138

    Google Scholar 

  • Sharma P, Ha ABJ, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Shuangxia J, Daniell H (2014) Expression of γ-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stress by reducing reactive oxygen species. Plant Biotechnol J 12:1274–1285

    Article  CAS  Google Scholar 

  • Shukla V, Dhankar M, Prakash J, Sastry KV (2007) Bioaccumulation of Zn, Cu and Cd in Channa punctatus. J Environ Biol 28:395–397

    CAS  PubMed  Google Scholar 

  • Singh S, Khan NA, Nazar R, Anjum NA (2008) Photosynthetic traits and activities of antioxidant enzymes in blackgram (Vigna mungo L. Hepper) under cadmium stress. J Plant Physiol 3:25–32

    Article  CAS  Google Scholar 

  • Skorzynska PE, Drazkiewicz M, Krupa Z (2004) The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana. Biol Plant 47:71–78

    Article  Google Scholar 

  • Skovsen E, Snyder JW, Lambert JD, Ogilby PR (2005) Lifetime and diffusion of singlet oxygen in a cell. J Phys Chem B 109:8570–8573

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PC, Gupta UC (1996) Trace elements in crop production. Science Publishers, Lebanon

    Google Scholar 

  • Srivastava AK, Bhargava P, RaiL C (2005) Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum. World J Microb Biotechnol 22:1291–1298

    Article  CAS  Google Scholar 

  • Sujatha P, Gupta A (1996) Tannery effluent characteristics and its effects on agriculture. J Ecotoxicol Environ Monit 6:45–48

    Google Scholar 

  • Sun Q, Yec ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    Article  CAS  PubMed  Google Scholar 

  • Tan YF, O'Toole N, Taylor NL, Millar AH (2010) Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol 152:747–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomiyasu T, Kodamatani H, Imura R, Matsuyama A, Miyamoto J, Akagi H, Kocman D, Kotnik J, Fajon V, Horvat M (2017) The dynamics of mercury near Idrija mercury mine, Slovenia: horizontal and vertical distributions of total, methyl, and ethyl mercury concentrations in soils. Chemosphere 184:244–252

    Article  CAS  PubMed  Google Scholar 

  • Triantaphylids C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  CAS  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei 19:325–346

    Article  Google Scholar 

  • USEPA (2000) A guide to developing and documenting cost estimates during the feasibility study (EPA 540-R-00-002). http://www.epa.gov/superfund/resources/remedy/costest.html

  • Valavanidis A, Vlachogianni T (2010) Metal pollution in ecosystems: ecotoxicology studies and risk assessment in the marine environment. Sci Adv Environ Toxicol Ecotoxicol Issues 1–14

    Google Scholar 

  • Varun M, D’Souza R, Pratas J, Paul MS (2012) Metal contamination of soils and plants associated with the glass industry in North Central India: prospects of phytoremediation. Environ Sci Pollut Res 19:269–281

    Article  CAS  Google Scholar 

  • Varun M, Jaggi D, D’Souza R, Paul M, Kumar B (2015) Abutilon indicum L.: a prospective weed for phytoremediation. Environ Monit Assess 187(8):527. https://doi.org/10.1007/s10661-015-4748-3

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhao F, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei CY, Chen TB (2006) Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 63:1048–1053

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Wang H, Wang H (2009) Effects of arsenic on activities of antioxidant enzymes in the fronds of plants with different abilities to accumulate arsenic. J Agro-Environ Sci 28(7):1379–1385

    CAS  Google Scholar 

  • Yan Y, Jian-Ping L, Xue-Hong Z (2008) Response of hyperaccumulator Leersia hexandra Swartz. to chromium-induced oxidative stress. Ecol Environ 17(4):1476–1482

    Google Scholar 

  • Yan L, Liuke-Hui, Yu F (2011) Effects of manganesee on enzymatic and non-enzymatic antioxidative defenses of the hyperaccumulate Ploygonum pubescens Blume. J Agro-Environ Sci 30:2422–2427

    Google Scholar 

  • Yang XE, Long XX, Ni WZ, Ye ZQ, He ZL, Stoffella PJ, Calvert D (2002) Assessing copper thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. J Environ Sci Health 37:625–635

    Article  CAS  Google Scholar 

  • Yang G, Liang M, Zhou P (2010) Antioxidative defense system differences among four plants under combined Pb and Cd stress. Chin J Eco-Agric 18(4):836–842

    Article  CAS  Google Scholar 

  • Zavoda J, Cutright T, Szpak J, Fallon E (2001) Uptake, selectivity, and inhibition of hydroponic treatment of contaminants. J Environ Eng 127:502–508

    Article  CAS  Google Scholar 

  • Zhao F, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Article  CAS  Google Scholar 

  • Zhu B, Alva AK (1993) Effect of pH on growth and uptake of copper by Swingle citrumelo seedlings. J Plant Nutr 16:1837–1845

    Article  CAS  Google Scholar 

  • Zhu Q, Xia H (2012) Effects of lead stress on antioxidant enzyme system and chlorophyll content of Pteris vittata. Guizhou Agric Sci 40:56–58

    CAS  Google Scholar 

  • Zhu YL, Zayed AM, Quian JH, D’souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from University Grants Commission [UGC-MRP – F. No. 43-100/2014(SR)] is gratefully acknowledged. We gratefully acknowledge the University Grants Commission for providing financial support by sanctioning the Post Doctoral Fellowship (F./PDFSS-2014-15-SC-UTT-8854) to Mayank Varun.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishtiyaq, S., Kumar, H., Varun, M., Kumar, B., Paul, M.S. (2018). Heavy Metal Toxicity and Antioxidative Response in Plants: An Overview. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Plants Under Metal and Metalloid Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6_3

Download citation

Publish with us

Policies and ethics