Skip to main content

Role of Micro-organisms in Modulating Antioxidant Defence in Plants Exposed to Metal Toxicity

  • Chapter
  • First Online:
Plants Under Metal and Metalloid Stress

Abstract

Micro-organisms play diverse role rhizosphere where they interact and develop mutualistic associations. They stimulate plant growth by synthesising various metabolites and phytohormones like auxins (IAA), cytokinins and gibberellins etc. They also help to alleviate the oxidative stress induced by heavy metals by lowering the free radical formation and activation of different antioxidants and antioxidative enzymes (SOD, APOX, CAT, GR, POD, MDHAR, GPX etc.). Furthermore, they modulate the activity of ROS- scavenging pathways and maintain ROS homeostasis thereby, averts ROS- initiated inhibition of plant cellular processes and enhance their survival under metal stress. Moreover, they elevate redox state of plants by increasing the activities of ascorbate-glutathione recycling enzymes under metal stress. They also alter the levels of organic acids, phenols, flavonoids and siderophores which act as a part of metal detoxification and antioxidative defence system in metal-stressed plants. Plant- microbe symbiosis enables accumulation of stress-responsive phytohormones and trigger antioxidative defence responsive genes which enhance overall survival of plants under metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi VAJM, Sepehri M (2016) Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis 69:9–19

    Article  CAS  Google Scholar 

  • Abd-Alla MH, Khalil Bagy M, El-enany AWE, Bashandy SR (2014a) Activation of Rhizobium tibeticum with flavonoid enhances nodulation, nitrogen fixation and growth of fenugreek (Trignoella foenum-graecum L.) grown in cobalted-polluted soil. Arch Environ Contam Toxicol 66:303–315

    Article  CAS  PubMed  Google Scholar 

  • Abd-Alla MH, Bashandy SR, Bagy MK, El-enany AWE (2014b) Rhizobium tibeticum activated with a mixture of flavonoids alleviates nickel toxicity in symbiosis with fenugreek (Trigonella foenumgraecum L). Ecotoxicology 23:946–959

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7:636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Hadi F, Ali N (2015a) Effective phytoextraction of cadmium (Cd) with increasing concentration of total phenolics and free proline in Cannabis sativa (L) plant under various treatments of fertilizers, plant growth regulators and sodium salt. Int J Phytoremediation 17:56–65

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015b) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Latef AAA, Abd_Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016a) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513

    PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Tabassum H, Alam A (2016b) Role of microbial bioremediation of heavy metal from contaminated soils: an update. Int J Biol Pharm Allied Sci 5:1605–1622

    CAS  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  PubMed  PubMed Central  Google Scholar 

  • Aloui A, Dumas-Gaudot E, Daher Z, Tuinen D, Aschi-Smit S, Morandi D (2012) Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation. Plant Physiol Biochem 60:233–239

    Article  CAS  PubMed  Google Scholar 

  • Amal-Ghamdi AMAL, Jais HM (2012) Interaction between arbuscular mycorrhiza and heavy metals in the rhizosphere and roots of Juniperus procera. Int J Agri Biol 14(1)

    Google Scholar 

  • Andrade SAL, Gratao PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207

    Article  CAS  Google Scholar 

  • Andrews M, Cripps MG, Edwards GR (2012) The potential of beneficial microorganisms in agricultural systems. Ann Appl Biol 160:1–5

    Article  Google Scholar 

  • Arao T, Ishikawa S, Murakami M, Abe K, Maejima Y, Makino T (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ 8:247–257

    Article  Google Scholar 

  • Arora A, Byrem TM, Nair MG, Strasburg GM (2000) Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373:102–109

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RA, Gratao PL, Monteiro CC, Carvalho RF (2012) What is new in the research on cadmium‐induced stress in plants? Food Energy Secur 1(2):133–140

    Google Scholar 

  • Bano SA, Ashfaq D (2013) Role of mycorrhiza to reduce heavy metal stress. Nat Sci 5:16

    Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bhaduri AM, Fulekar MH (2012) Assessment of arbuscular mycorrhizal fungi on the phytoremediation potential of Ipomoea aquatica on cadmium uptake. 3. Biotech 2:193–198

    Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transducation in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ (2017) Endophytic Paecilomyces formosus LHL10 augments Glycine max L. Adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress. Front Plant Sci 8:870

    Article  PubMed  PubMed Central  Google Scholar 

  • Borsetti F, Tremaroli V, Michelacci F, Borghese R, Winterstein C, Daldal F, Zannoni D (2005) Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156:807–813

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009a) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake pathway. Environ Microbiol 11:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009b) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Cao YR, Zhang XY, Deng JY, Zhao QQ, Xu H (2012) Lead and cadmium-induced oxidative stress impacting mycelial growth of Oudemansiella radicata in liquid medium alleviated by microbial siderophores. World J Microbiol Biotechnol 28:1727–1737

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Wang W, Wang F, Zhang J, Wang Z, Yang S, Xue Q (2016) Drought-tolerant Streptomyces pactum Act12 assist phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus: great potential application in arid/semi-arid areas. Environ Sci Pollut Res 23:14898–14907

    Article  CAS  Google Scholar 

  • Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31:861–866

    Article  CAS  PubMed  Google Scholar 

  • Cohen MF, Sakihama Y, Yamasaki H (2001) Roles of plant flavonoids in interactions with microbes: from protection against pathogens to the mediation of mutualism. TC 2:157–173

    CAS  Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 6:663–667

    Article  Google Scholar 

  • D'Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813

    Article  PubMed  CAS  Google Scholar 

  • Delvasto P, Ballester A, Muñoz JA, González F, Blázquez ML, Igual JM, Valverde A, García-Balboa C (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner Eng 22:1–9

    Article  CAS  Google Scholar 

  • Denarie J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009a) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009b) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009c) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR, Tezotto T, Azevedo R (2013) Burkholderia sp SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann Appl Biol 165:494–507

    Google Scholar 

  • Farshian SJK, Malekzadeh P (2007) Effect of arbuscular mycorrhizal (G. etunicatum) fungus on antioxidant enzymes activity under zinc toxicity in lettuce plants. Pak J Biol Sci 10:1865–1869

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes A, Almonacid L, Ocampo JA, Arriagada C (2016) Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil. Plant Soil 407:355–366

    Article  CAS  Google Scholar 

  • Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Miao C, Xia J, Luo C, Mao L, Zhou P, Shi W (2012) Effect of citric acid on phytoextraction and antioxidative defense in Solanum nigrum L. as a hyperaccumulator under Cd and Pb combined pollution. Earth Sci 65:1923–1932

    Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    Article  CAS  Google Scholar 

  • Garg N, Aggarwal N (2012) Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66:9–26

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    Article  CAS  Google Scholar 

  • Garg N, Kaur H (2013) Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi. J Plant Nutr 36:67–90

    Article  CAS  Google Scholar 

  • Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2:1043–1055

    Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  PubMed  Google Scholar 

  • Gratao PL, Monteiro CC, Peres LEP, Azevedo RA (2008) The isolation of antioxidant enzymes from mature tomato (cv. Micro-Tom) plants. Hortic Sci 43:1608–1610

    Google Scholar 

  • Gratao PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP, Medici LO, Lea PJ, Azevedo RA (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67:387–394

    Article  CAS  Google Scholar 

  • Greaney KM (2005) An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama. School of Life Sci Heriot-Watt University, Edinburgh

    Google Scholar 

  • Guarino C, Sciarrillo R (2017) Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecol Eng 99:70–82

    Article  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Shan X, Zhang S, Wen B, Owens G (2006) Enhanced cadmium accumulation in maize roots—the impact of organic acids. Plant Soil 289:355–368

    Article  CAS  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23:272–281

    Article  CAS  PubMed  Google Scholar 

  • Hassan W, Bano R, Bashir F, David J (2014) Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ Sci Pollut Res 21:10983–10996

    Article  CAS  Google Scholar 

  • Hassan W, Bashir S, Ali F, Ijaz M, Hussain M, David J (2016) Role of ACC-deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ Earth Sci 75:267

    Article  CAS  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  CAS  PubMed  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63

    Article  Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61:14–30

    Article  CAS  Google Scholar 

  • Huffmeyer N, Klasmeier J, Matthies M (2009) Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER. Sci Total Environ 407:2296–2305

    Article  PubMed  CAS  Google Scholar 

  • Ibiang YB, Mitsumoto H, Sakamoto K (2017) Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese, iron, phosphorus, and polyphenols in soybean (Glycine max (L.) Merr.) under excess zinc. Environ Exp Bot 137:1–13

    Article  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Riaz M, Arif M, Ali S, Raza SH (2014a) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014b) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 10:285–293

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016a) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, Hussain S, Riaz M, Abbas F (2016b) Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environ Sci Pollut Res 23:220–233

    Article  CAS  Google Scholar 

  • Janmohammadi M, Bihamta MR, Ghasemzadeh F (2013) Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes. Cercetări Agronomice Moldova 46:153

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Jiang Q-Y, Zhuo F, Long S-H, Zhao H-D, Yang D-J, Ye Z-H, Li S-S, Jing Y-X (2016) Can arbuscular mycorrhizal fungi reduce cd uptake and alleviate cd toxicity of Lonicera japonica grown in cd-added soils? Sci Rep 6(1)

    Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Li SS, Jing YX (2016a) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang QY, Tan SY, Zhuo F, Yang DJ, Ye ZH, Jing YX (2016b) Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Appl Soil Ecol 98:112–120

    Article  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere–a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Prabowo AM, Kochian LV (1996) Kinetics of malate transport and decomposition in acid soils and isolated bacterial populations: the effect of microorganisms on root exudation of malate under Al stress. Plant Soil 182:239–247

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Van Hees PAW (2003) Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Google Scholar 

  • Kang J, Choi MS, Yi HI, Song YH, Lee D, Cho JH (2011) A five-year observation of atmospheric metals on Ulleung Island in the East/Japan Sea: temporal variability and source identification. Atmos Environ 45:4252–4262

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Khan AL, Lee KE, Lee JD, Lee IJ (2015) Enterobacter asburiae KE17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean. Plant Biol 17:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Karthik C, Oves M, Thangabalu R, Sharma R, Santhosh SB, Arulselvi PI (2016) Cellulosimi crobium fungi-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under Chromium (VI) toxicity. J Adv Res 7:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Wani AZPA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khan AR, Ullah I, Khan AL, Park GS, Waqas M, Hong SJ, Jung BK, Kwak Y, Lee IJ, Shin JH (2015) Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation. Environ Sci Pollut Res 22:14032–14042

    Article  CAS  Google Scholar 

  • Khodadoust AP, Reddy KR, Maturi K (2004) Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ Eng Sci 21:691–704

    Article  CAS  Google Scholar 

  • Kibria G (2014) Trace metals/heavy metals and its impact on environment, biodiversity and human health – a short review. https://doi.org/10.13140/RG.2.1.3102.2568

  • Kim DY, Bovet L, Kushnir S, Woon Noh E, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli S, Poonam K, Bali S, Kaur H, Bhardwaj R (2013) Analysis of ameliorative effects of 24-EBL on growth characteristics, photosynthetic pigment cascade and metal uptake of 60 day old plants of B. juncea plants under Cu metal stress. Biospectra 8:147–154

    Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Nasser Alyemeni M, Wijaya L, Ahmad P (2017) Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 2017:1–14

    Google Scholar 

  • Kong Z, Glick BR, Duan J, Ding S, Tian J, McConkey BJ, Wei G (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398

    Article  CAS  Google Scholar 

  • Kopittke PM, Blamey FPC, Menzies NW (2010) Toxicity of Cd to signal grass (Brachiaria decumbens Stapf.) and Rhodes grass (Chloris gayana Kunth.). Plant Soil 330:515–523

    Article  CAS  Google Scholar 

  • Kowalski A, Siepak M, Boszke L (2007) Mercury contamination of surface and ground waters of Poznań, Poland. Pol J Environ Stud 16:67–74

    CAS  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467

    Article  CAS  Google Scholar 

  • Li Y, Yang R, Zhang A, Wang S (2014) The distribution of dissolved lead in the coastal waters of the East China Sea. Mar Pollut Bull 85:700–709

    Article  CAS  PubMed  Google Scholar 

  • Li JF, He XH, Li H, Zheng WJ, Li JF, Wang MY (2015a) Arbuscular mycorrhizal fungi increase growth and phenolics synthesis in Poncirus trifoliata under iron deficiency. Sci Hortic 183:87–92

    Article  CAS  Google Scholar 

  • Li P, Lin C, Cheng H, Duan X, Lei K (2015b) Contamination and health risks of soil heavy metals around a lead/zinc smelter in south western China. Ecotoxicol Environ Saf 113:391–399

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Vicente JAF, Freitas H (2010) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13:126–139

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo YM, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226

    Article  PubMed  CAS  Google Scholar 

  • Maksymiec W, Wojcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427

    Article  CAS  PubMed  Google Scholar 

  • Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassl Sci 52:1–14

    Article  Google Scholar 

  • Márquez-García B, Fernández-Recamales M, Córdoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. J Bot 6

    Google Scholar 

  • Martin JAR, Ramos-Miras JJ, Boluda R, Gil C (2013) Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 200:180–188

    Article  CAS  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mohod CV, Dhote J (2013) Review of heavy metals in drinking water and their effect on human health. Int J Innovat Res Sci Engin Technol 2:2992–2996

    Google Scholar 

  • Mollavali M, Bolandnazar SA, Schwarz D, Rohn S, Riehle P, Nahandi FZ (2016) Flavonol glucoside, antioxidant enzyme biosynthesis affected by mycorrhizal fungi in various cultivars of onion (Allium cepa L.). J Agr Food Fhem 64:71–77

    Article  CAS  Google Scholar 

  • Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163

    PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence, toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nell M, Voetsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89:1090–1096

    Article  CAS  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  PubMed  Google Scholar 

  • Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  PubMed  CAS  Google Scholar 

  • Oves M, Khan MS, Qari AH, Felemban MN, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodegr 7:2

    Google Scholar 

  • Pandey S, Barai PK, Maiti TK (2013) Influence of heavy metals on the activity of antioxidant enzymes in the metal resistant strains of Ochrobactrum and Bacillus sp. J Environ Biol 34:1033

    CAS  PubMed  Google Scholar 

  • Panfili F, Schneider A, Vives A, Perrot F, Hubert P, Pellerin S (2009) Cadmium uptake by durum wheat in presence of citrate. Plant Soil 316:299–309

    Article  CAS  Google Scholar 

  • Pinter IF, Salomon MV, Berli F, Bottini R, Piccoli P (2017) Characterization of the As (III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Appl Soil Ecol 109:60–68

    Article  Google Scholar 

  • Poyart C, Quesne G, Trieu-Cuot P (2002) Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov. Int J Syst Evol Microbiol 52:1247–1255

    CAS  PubMed  Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar U, Reddy BLN, Rajaravindra KS, Niranjan M, Bhattacharya TK, Chatterjee RN, Sharma RP (2010) Effect of naked neck gene on immune competence, serum biochemical and carcass traits in chickens under a tropical climate. Asian-Australas J Anim Sci 23:867–872

    Article  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Singh V, Singh S, Sarma BK, Singh HB (2016) Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii. Plant Physiol Biochem 109:430–441

    Article  CAS  PubMed  Google Scholar 

  • Reddy AM, Reddy VS, Scheffler BE, Wienand U, Reddy AR (2007) Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab Eng 9:95–111

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52:527–560

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014a) A novel Azotobacter vinellandii (SRI Az 3) functions in salinity stress tolerance in rice. Plant Sig Behav 9:511–523

    Google Scholar 

  • Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N (2014b) Phenotypic and molecular characterisation of efficient nitrogen-fixing azotobacter strains from rice fields for crop improvement. Protoplasma 251:511–523

    Article  CAS  PubMed  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798

    Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Sayadi MH (2014) Impact of land use on the distribution of toxic metals in surface soils in Birjand city, Iran. Proc Int Acad Ecol Environ Sci 4:18

    Google Scholar 

  • Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9:691–694

    Article  CAS  PubMed  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Seshadri B, Bolan NS, Naidu R (2015) Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr 15:524–548

    CAS  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346

    Article  CAS  PubMed  Google Scholar 

  • Seyoum A, Asres K, El-Fiky FK (2006) Structure–radical scavenging activity relationships of flavonoids. Phytochemistry 67:2058–2070

    Article  CAS  PubMed  Google Scholar 

  • Shahabivand S, Maivan HZ, Mahmoudi E, Soltani BM, Sharifi M, Aliloo AA (2016) Antioxidant activity and gene expression associated with cadmium toxicity in wheat affected by mycorrhizal fungus. Žemdirbystė (Agric) 103:53–60

    Google Scholar 

  • Shanker A, Cervantes KC, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.)under iron limiting conditions. Microbiol Res 158:243–248

    Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 2012:1–26

    Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Shi P, Zhu K, Zhang Y, Chai T (2016) Growth and cadmium accumulation of Solanum nigrum L. seedling were enhanced by heavy metal-tolerant strains of Pseudomonas aeruginosa. Water Air Soil Pollut 227:459

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2000a) Ascorbate biosynthesis and function in photoprotection. Philos Trans Royal Soc Lond Ser B, Biol Sci 355:1455–1464

    Article  CAS  Google Scholar 

  • Smirnoff N (2000b) Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Sousa NR, Ramos MA, Marques APGC, Castro PML (2012) The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium. Sci Total Environ 414:63–67

    Article  CAS  PubMed  Google Scholar 

  • Su C (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skeptics Critic 3:24

    Google Scholar 

  • Sumner ME (2000) Beneficial use of effluents, wastes, and biosolids. Commun Soil Sci Plant Anal 31:1701–1715

    Article  CAS  Google Scholar 

  • Tabrizi L, Mohammadi S, Delshad M, Zadeh BM (2015) Effect of arbuscular mycorrhizal fungi on yield and phytoremediation performance of pot marigold (Calendula officinalis L.) under heavy metals stress. Int J Phytoremediation 17:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  CAS  PubMed  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326

    Article  CAS  PubMed  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Huang HG, Wang K, Brown PH (2012) Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biol Plant 56:344–350

    Article  CAS  Google Scholar 

  • Triantaphylidès C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Breusegem FV, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 2:158–165

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • van Doorn WG, Ketsa S (2014) Cross reactivity between ascorbate peroxidase and phenol (guaiacol) peroxidase. Postharvest Biol Technol 95:64–69

    Article  CAS  Google Scholar 

  • Viers J, Oliva P, Nonell A, Gélabert A, Sonke JE, Freydier R, Gainville R, Dupré B (2007) Evidence of Zn isotopic fractionation in a soil–plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem Geol 239:124–137

    Article  CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y (2012) Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 89:743–750

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xu R, You L, Zhong G (2013) Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Ecotoxicol Environ Saf 94:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang Y, Zhang R, Wang W, Xu D, Guo J, Li P, Yu K (2015) Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci Total Environ 532:645–654

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Li T, Liu G, Smith JM, Zhao Z (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Report 6:22028

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Chromium reduction, plant growth–promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhao Y, Zhao X, Wang Y, Deng W (2014) Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicol Environ Saf 108:161–167

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Yang W, Jiang F, Qiao Y, Yan Y, An S, Leng X (2016) Effects of reclamation on heavy metal pollution in a coastal wetland reserve. J Coast Conserv 1–7

    Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schratz C (2005) Hyper accumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762

    Article  PubMed  CAS  Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    Article  CAS  Google Scholar 

  • Zaets I, Kramarev S, Kozyrovska N (2010) Inoculation with a bacterial consortium alleviates the effect of cadmium overdose in soybean plants. Open Life Sci 5:481–490

    CAS  Google Scholar 

  • Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

  • Zhang Y, He L, Chen Z, Zhang W, Wang Q, Qian M, Sheng X (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xu X, Sun W, Huang B, Darilek JL, Shi X (2008) Uncertainty assessment of mapping mercury contaminated soils of a rapidly industrializing city in the Yangtze River Delta of China using sequential indicator co-simulation. Environ Monit Assess 138:343–355

    Article  CAS  PubMed  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanna, K. et al. (2018). Role of Micro-organisms in Modulating Antioxidant Defence in Plants Exposed to Metal Toxicity. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Plants Under Metal and Metalloid Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6_12

Download citation

Publish with us

Policies and ethics