Skip to main content

Alternative Solvent Design for Oil Extraction from Palm Pressed Fibre via Computer-Aided Molecular Design

  • Chapter
  • First Online:
Green Technologies for the Oil Palm Industry

Abstract

Palm pressed fibre (PPF) is a by-product from palm oil milling process. There are approximately 5–7% of residual oils retained in PPF after the oil extraction process. Hexane is commonly used as solvent for extraction of the residual oil due to its low cost and high oil solubility. However, the high boiling point of hexane leads to degradation of carotenes during oil recovery . Besides, hexane is highly flammable and causes air pollution through fugitive emissions. Thus, there is interest in identifying alternative solvents to extract residual oil from PPF . In this chapter, a new approach that combines Computer-Aided Molecular Design (CAMD) and Analytic Hierarchy Process (AHP) is presented. The proposed approach can determine the alternative solvents that exert favourable attributes for oil extraction. Both physical and environmental properties are chosen as design criteria to generate solvents with improved performance and environmental characteristics. Nonetheless, it is difficult to evaluate the relative importance of each property since properties that belong to different categories cannot be compared on a common scale. This issue needs to be addressed seriously as different relative weights will identify different solvents. The main attraction of this AHP –CAMD approach is that the relative importance weight of those identified properties can be systematically defined. AHP structures the CAMD problem in a hierarchical manner that allows physical and environmental properties to be compared under the same analysis. Through this approach, the identified alternative solvents have comparable or better performance as compared to hexane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen DT, Shonnard DR (2002) Green engineering: environmentally conscious design of chemical processes. Prentice Hall PTR, Upper Saddle River, NJ

    Google Scholar 

  2. Austin ND, Sahinidis NV, Trahan DW (2016) Computer-aided molecular design: an introduction and review of tools, applications, and solution techniques. Chem Eng Res Des 116:2–26. https://doi.org/10.1016/j.cherd.2016.10.014

    Article  CAS  Google Scholar 

  3. Bardow A, Steur K, Gross J (2010) Continuous-molecular targeting for integrated solvent and process design. Ind Eng Chem Res 49:2834–2840. https://doi.org/10.1021/ie901281w

    Article  CAS  Google Scholar 

  4. Bockisch M (ed) (1998) Chapter 5—the extraction of vegetable oils. In: Fats and oils handbook. AOCS press, pp 345–445. https://doi.org/10.1016/B978-0-9818936-0-0.50010-X

  5. Camarda KV, Maranas CD (1999) Optimization in polymer design using connectivity indices. Ind Eng Chem Res 38:1884–1892. https://doi.org/10.1021/ie980682n

    Article  CAS  Google Scholar 

  6. Chong FK, Foo DCY, Eljack FT, Atilhan M, Chemmangattuvalappil NG (2015) Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technol Environ Policy 17:1301–1312. https://doi.org/10.1007/s10098-015-0938-5

    Article  CAS  Google Scholar 

  7. Choo Y-M, Yap S-C, Ooi C-K, Ma A-N, Goh S-H, Ong AS-H (1996) Recovered oil from palm-pressed fiber: a good source of natural carotenoids, vitamin E, and sterols. J Am Oil Chem Soc 73:599–602. https://doi.org/10.1007/BF02518114

    Article  CAS  Google Scholar 

  8. Chua SC, Tan CP, Mirhosseini H, Lai OM, Long K, Baharin BS (2009) Optimization of ultrasound extraction condition of phospholipids from palm-pressed fiber. J Food Eng 92:403–409. https://doi.org/10.1016/j.jfoodeng.2008.12.013

    Article  CAS  Google Scholar 

  9. Cisternas LA, Gálvez ED (2006) Principles for chemical products design. In: Marquardt W, Pantelides C (eds) 16th European symposium on computer aided process engineering and 9th international symposium on process systems engineering. Elsevier, pp 1107–1112. http://dx.doi.org/10.1016/S1570-7946(06)80194-X

  10. Conte E, Martinho A, Matos HA, Gani R (2008) Combined group-contribution and atom connectivity index-based methods for estimation of surface tension and viscosity. Ind Eng Chem Res 47:7940–7954. https://doi.org/10.1021/ie071572w

    Article  CAS  Google Scholar 

  11. de Oliveira RC, de Barros STD, Gimenes ML (2013) The extraction of passion fruit oil with green solvents. J Food Eng 117:458–463. https://doi.org/10.1016/j.jfoodeng.2012.12.004

    Article  CAS  Google Scholar 

  12. Euler M, Krishna V, Schwarze S, Siregar H, Qaim M (2017) Oil palm adoption, household welfare, and nutrition among smallholder farmers in Indonesia. World Dev 93:219–235. https://doi.org/10.1016/j.worlddev.2016.12.019

    Article  Google Scholar 

  13. Gani R (2004) Chemical product design: challenges and opportunities. Comput Chem Eng 28:2441–2457. https://doi.org/10.1016/j.compchemeng.2004.08.010

    Article  CAS  Google Scholar 

  14. Gebreslassie BH, Diwekar UM (2015) Efficient ant colony optimization for computer aided molecular design: Case study solvent selection problem. Comput Chem Eng 78:1–9. https://doi.org/10.1016/j.compchemeng.2015.04.004

    Article  CAS  Google Scholar 

  15. Goh SH, Choo YM, Ong SH (1985) Minor constituents of palm oil. J Am Oil Chem Soc 62:237–240. https://doi.org/10.1007/BF02541384

    Article  CAS  Google Scholar 

  16. Harper PM, Gani R (2000) A multi-step and multi-level approach for computer aided molecular design. Comput Chem Eng 24:677–683. https://doi.org/10.1016/S0098-1354(00)00410-5

    Article  CAS  Google Scholar 

  17. Hostrup M, Harper PM, Gani R (1999) Design of environmentally benign processes: integration of solvent design and separation process synthesis. Comput Chem Eng 23:1395–1414. https://doi.org/10.1016/S0098-1354(99)00300-2

    Article  CAS  Google Scholar 

  18. Hukkerikar AS, Kalakul S, Sarup B, Young DM, Sin G, Gani R (2012) Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution + (GC+) property models and uncertainty analysis. J Chem Inf Model 52:2823–2839. https://doi.org/10.1021/ci300350r

    Article  CAS  PubMed  Google Scholar 

  19. Hukkerikar AS, Sarup B, Ten Kate A, Abildskov J, Sin G, Gani R (2012) Group-contribution + (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis. Fluid Phase Equilib 321:25–43. https://doi.org/10.1016/j.fluid.2012.02.010

    Article  CAS  Google Scholar 

  20. Husain Z, Zainac Z, Abdullah Z (2002) Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass Bioenerg 22:505–509. https://doi.org/10.1016/S0961-9534(02)00022-3

    Article  CAS  Google Scholar 

  21. Ishizaka A, Labib A (2011) Review of the main developments in the analytic hierarchy process. Expert Syst Appl 38:14336–14345. https://doi.org/10.1016/j.eswa.2011.04.143

    Article  Google Scholar 

  22. Johnson LA, Lusas EW (1983) Comparison of alternative solvents for oils extraction. J Am Oil Chem Soc 60:229–242. https://doi.org/10.1007/BF02543490

    Article  CAS  Google Scholar 

  23. Johnson and Johnson (2017) Responsible palm oil sourcing criteria (RPOSC) [WWW Document]. URL https://www.jnj.com/about-jnj/company-statements/responsible-palm-oil-sourcing-criteria. Accessed 25 Oct 17

  24. Karunanithi AT, Mehrkesh A (2013) Computer-aided design of tailor-made ionic liquids. AIChE J 59:4627–4640. https://doi.org/10.1002/aic.14228

    Article  CAS  Google Scholar 

  25. Khor SY, Liam KY, Loh WX, Tan CY, Ng LY, Hassim MH, Ng DKS, Chemmangattuvalappil NG (2017) Computer aided molecular design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Saf Environ Prot 106:211–223. https://doi.org/10.1016/j.psep.2017.01.006

    Article  CAS  Google Scholar 

  26. Kumar SPJ, Prasad SR, Banerjee R, Agarwal DK, Kulkarni KS, Ramesh KV (2017) Green solvents and technologies for oil extraction from oilseeds. Chem Cent J 11:9. https://doi.org/10.1186/s13065-017-0238-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lau H Lik Nang, Choo YM, Ma AN, Chuah CH (2008) Selective extraction of palm carotene and vitamin E from fresh palm-pressed mesocarp fiber (Elaeis guineensis) using supercritical CO2. J Food Eng 84:289–296. https://doi.org/10.1016/j.jfoodeng.2007.05.018

    Article  CAS  Google Scholar 

  28. Moggridge GD, Cussler EL (2000) An introduction to chemical product design. Chem Eng Res Des 78:5–11. https://doi.org/10.1205/026387600527022

    Article  CAS  Google Scholar 

  29. Moncada J, Tamayo JA, Cardona CA (2016) Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. J Clean Prod 112:172–181. http://dx.doi.org/10.1016/j.jclepro.2015.09.067

    Article  Google Scholar 

  30. Neoh BK, Thang YM, Zain MZM, Junaidi A (2011) Palm pressed fibre oil: a new opportunity for premium hardstock? Int Food Res J 18:769–773

    CAS  Google Scholar 

  31. Ng LY, Andiappan V, Chemmangattuvalappil NG, Ng DKS (2015) Novel methodology for the synthesis of optimal biochemicals in integrated biorefineries via inverse design techniques. Ind Eng Chem Res 54:5722–5735. https://doi.org/10.1021/acs.iecr.5b00217

    Article  CAS  Google Scholar 

  32. Odele O, Macchietto S (1993) Computer aided molecular design: a novel method for optimal solvent selection. Fluid Phase Equilib 82:47–54. https://doi.org/10.1016/0378-3812(93)87127-M

    Article  CAS  Google Scholar 

  33. Ooi J, Promentilla MAB, Tan RR, Ng DKS, Chemmangattuvalappil NG (2017) A systematic methodology for multi-objective molecular design via analytic hierarchy process. Process Saf Environ Prot 111:663–677. https://doi.org/10.1016/j.psep.2017.08.039

    Article  CAS  Google Scholar 

  34. Pavurala N, Achenie LEK (2014) Identifying polymer structures for oral drug delivery—a molecular design approach. Comput Chem Eng 71:734–744. https://doi.org/10.1016/j.compchemeng.2014.07.015

    Article  CAS  Google Scholar 

  35. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry, 4th ed. Wiley

    Google Scholar 

  36. Satty TL (1980) The analytical hierarchy process: planning, priority setting, resource allocation. RWS Publ, Pittsbg

    Google Scholar 

  37. Seth R, Mackay D, Muncke J (1999) Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ Sci Technol 33:2390–2394. https://doi.org/10.1021/es980893j

    Article  CAS  Google Scholar 

  38. Sicaire A-G, Vian M, Fine F, Joffre F, Carré P, Tostain S, Chemat F (2015) Alternative bio-based solvents for extraction of fat and oils: solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing. Int J Mol Sci 16:8430–8453. https://doi.org/10.3390/ijms16048430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Struebing H, Ganase Z, Karamertzanis PG, Siougkrou E, Haycock P, Piccione PM, Armstrong A, Galindo A, Adjiman CS (2013) Computer-aided molecular design of solvents for accelerated reaction kinetics. Nat Chem 5:952–957

    Article  CAS  Google Scholar 

  40. Su EZ, Xu WQ, Gao KL, Zheng Y, Wei DZ (2007) Lipase-catalyzed in situ reactive extraction of oilseeds with short-chained alkyl acetates for fatty acid esters production. J Mol Catal B Enzym 48:28–32. https://doi.org/10.1016/j.molcatb.2007.06.003

    Article  CAS  Google Scholar 

  41. Ten JY, Hassim MH, Chemmangattuvalappil N, Ng DKS (2016) A novel chemical product design framework with the integration of safety and health aspects. J Loss Prev Process Ind 40:67–80. https://doi.org/10.1016/j.jlp.2015.11.027

    Article  CAS  Google Scholar 

  42. Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34:273–286. https://doi.org/10.1037/h0070288

    Article  Google Scholar 

  43. Tzia C, Liadakis G (2003) Extraction optimization in food engineering, food science and technology. CRC Press

    Google Scholar 

  44. United States Department of Agriculture (2017) Oilseeds: world markets and trade [WWW Document]. URL https://www.fas.usda.gov/psdonline/circulars/oilseeds.pdf. Accessed 25 Oct 17

  45. Venkatasubramanian V, Chan K, Caruthers JM (1994) An international journal of computer applications in chemical engineeringcomputer-aided molecular design using genetic algorithms. Comput Chem Eng 18:833–844. https://doi.org/10.1016/0098-1354(93)E0023-3

    Article  CAS  Google Scholar 

  46. Yara-Varon E, Fabiano-Tixier AS, Balcells M, Canela-Garayoa R, Bily A, Chemat F (2016) Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv 6:27750–27759. https://doi.org/10.1039/C6RA03016E

    Article  CAS  Google Scholar 

  47. Yokoyama M (1921) The nature of the affective judgment in the method of paired comparisons. Am J Psychol 32:357–369. https://doi.org/10.2307/1414000

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Ministry of Higher Education, Malaysia through the LRGS Grant (LRGS/2013/UKM-UNMC/PT/05) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishanth G. Chemmangattuvalappil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ooi, J., Promentilla, M.A.B., Tan, R.R., Ng, D.K.S., Chemmangattuvalappil, N.G. (2019). Alternative Solvent Design for Oil Extraction from Palm Pressed Fibre via Computer-Aided Molecular Design. In: Foo, D., Tun Abdul Aziz, M. (eds) Green Technologies for the Oil Palm Industry. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2236-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2236-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2235-8

  • Online ISBN: 978-981-13-2236-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics