Skip to main content

The Obvious and the Hidden: Prediction and Function of Fungal Peroxisomal Matrix Proteins

  • Chapter
  • First Online:
Book cover Proteomics of Peroxisomes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

Fungal peroxisomes are characterized by a number of specific biological functions. To understand the physiology and biochemistry of these organelles knowledge of the proteome content is crucial. Here, we address different strategies to predict peroxisomal proteins by bioinformatics approaches. These tools range from simple text searches to network based learning strategies. A complication of this analysis is the existence of cryptic peroxisomal proteins, which are overlooked in conventional bioinformatics queries. These include proteins where targeting information results from transcriptional and posttranscriptional alterations. But also proteins with low efficiency targeting motifs that are predominantly localized in the cytosol, and proteins lacking any canonical targeting information, can play important roles within peroxisomes. Many of these proteins are so far unpredictable. Detection and characterization of these cryptic peroxisomal proteins revealed the presence of novel peroxisomal enzymatic reaction networks in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An C, Gao Y, Li J, Liu X, Gao F, Gao H (2017) Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis. Plant Cell Rep 36(7):1027–1036

    Article  CAS  Google Scholar 

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423:181–185

    Article  CAS  Google Scholar 

  • Andreev DE, O’Connor PBF, Zhdanov AV, Dmitriev RI, Shatsky IN, Papkovsky DB, Baranov PV (2015) Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes. Genome Biol 16:90

    Article  Google Scholar 

  • Antonenkov VD, Hiltunen JK (2012) Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta 1822:1374–1386

    Article  CAS  Google Scholar 

  • Antonenkov VD, Sormunen RT, Hiltunen JK (2004) The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J Cell Sci 117:5633–5642

    Article  CAS  Google Scholar 

  • Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y (2009) Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 21:1291–1304

    Article  CAS  Google Scholar 

  • Ast J, Stiebler AC, Freitag J, Bölker M (2013) Dual targeting of peroxisomal proteins. Front Physiol 4:297

    Article  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  Google Scholar 

  • Bartoszewska M, Opalinski L, Veenhuis M, van der Klei IJ (2011) The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi. Biotechnol Lett 33:1921–1931

    Article  CAS  Google Scholar 

  • Baumgart E, Fahimi HD, Stich A, Völkl A (1996) L-Lactate Dehydrogenase A- and AB isoforms are bona fide peroxisomal enzymes in rat liver. J Biol Chem 271:3846–3855

    Article  CAS  Google Scholar 

  • Bhambra GK, Wang Z-Y, Soanes DM, Wakley GE, Talbot NJ (2006) Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol Microbiol 61:46–60

    Article  CAS  Google Scholar 

  • Bodén M, Hawkins J (2005) Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics 21:2279–2286

    Article  Google Scholar 

  • Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763:1565–1573

    Article  CAS  Google Scholar 

  • Cabantous S, Terwilliger TC, Waldo GS (2004) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    Article  Google Scholar 

  • Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M (2015) New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and-dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta (BBA)-Molecular Cell Res 1853:111–125

    Article  Google Scholar 

  • Dean R, Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  Google Scholar 

  • Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS (2013) Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. Elife 2:e01179

    Article  Google Scholar 

  • Effelsberg D, Cruz-Zaragoza LD, Tonillo J, Schliebs W, Erdmann R (2015) Role of Pex21p for piggyback import of Gpd1p and Pnc1p into peroxisomes of Saccharomyces cerevisiae. J Biol Chem 290:25333–25342

    Article  CAS  Google Scholar 

  • Elgersma Y, van Roermund CW, Wanders RJ, Tabak HF (1995) Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J 14:3472–3479

    Article  CAS  Google Scholar 

  • Emanuelsson O, Elofsson A, Von Heijne G, Cristobal S (2003) In silico prediction of the peroxisomal proteome in fungi, plants and animals. J Mol Biol 330:443–456

    Article  CAS  Google Scholar 

  • Freitag J, Ast J, Bölker M (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon readthrough in fungi. Nature 485:522–525

    Article  CAS  Google Scholar 

  • Freitag J, Ast J, Linne U, Stehlik T, Martorana D, Bölker M, Sandrock B (2014) Peroxisomes contribute to biosynthesis of extracellular glycolipids in fungi. Mol Microbiol 93(1):24–36

    Article  CAS  Google Scholar 

  • Fujihara N, Sakaguchi A, Tanaka S, Fujii S, Tsuji G, Shiraishi T, O’Connell R, Kubo Y (2010) Peroxisome biogenesis factor PEX13 is required for appressorium-mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. Mol Plant-Microbe Interact 23:436–445

    Article  CAS  Google Scholar 

  • Gatto GJ, Geisbrecht BV, Gould SJ, Berg JM (2000) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Mol Biol 7:1091–1095

    Article  CAS  Google Scholar 

  • Glover JR, Andrews DW, Rachubinski RA (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci 91:10541–10545

    Article  CAS  Google Scholar 

  • Gonzalez NH, Felsner G, Schramm FD, Klingl A, Maier UG, Bolte K (2011) A single peroxisomal targeting signal mediates matrix protein import in diatoms. PLoS One 6:e25316

    Article  CAS  Google Scholar 

  • Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108:1657–1664

    Article  CAS  Google Scholar 

  • Guimaraes SC, Schuster M, Bielska E, Dagdas G, Kilaru S, Meadows BRA, Schrader M, Steinberg G (2015) Peroxisomes, lipid droplets, and endoplasmic reticulum ‘hitchhike’ on motile early endosomes. J Cell Biol 211(5):945–54

    Article  CAS  Google Scholar 

  • Gunkel K, van Dijk R, Veenhuis M, van der Klei IJ (2004) Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery. Mol Biol Cell 15:1347–1355

    Article  CAS  Google Scholar 

  • Hawkins J, Mahony D, Maetschke S, Wakabayashi M, Teasdale RD, Bodén M (2007) Identifying novel peroxisomal proteins. Proteins Struct Funct Bioinforma 69:606–616

    Article  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci 89:10915–10919

    Article  CAS  Google Scholar 

  • Hofhuis J, Schueren F, Nötzel C, Lingner T, Gärtner J, Jahn O, Thoms S (2016) The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol 6:160246

    Article  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  CAS  Google Scholar 

  • Idnurm A, Giles SS, Perfect JR, Heitman J (2007) Peroxisome function regulates growth on glucose in the basidiomycete fungus Cryptococcus neoformans. Eukaryot Cell 6:60–72

    Article  CAS  Google Scholar 

  • Islinger M, Li KW, Seitz J, Völkl A, Lüers GH (2009) Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes-evidence for a natural piggyback import mechanism in mammals. Traffic 10:1711–1721

    Article  CAS  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231

    Article  CAS  Google Scholar 

  • Kabran P, Rossignol T, Gaillardin C, Nicaud JM, Neuvéglise C (2012) Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica. DNA Res 19:231–244

    Article  CAS  Google Scholar 

  • Kataya ARA, Reumann S (2010) Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Signal Behav 5:171–175

    Article  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  Google Scholar 

  • Kempken F (2013) Alternative splicing in ascomycetes. Appl Microbiol Biotechnol 10:4235–4241

    Article  Google Scholar 

  • Kimura A, Takano Y, Furusawa I, Okuno T (2001) Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13:1945–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein ATJ, van den Berg M, Bottger G, Tabak HF, Distel B (2002) Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 277:25011–25019

    Article  CAS  Google Scholar 

  • Klose J, Kronstad JW (2006) The multifunctional β-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot Cell 5:2047–2061

    Article  CAS  Google Scholar 

  • Kornberg A (1962) On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions

    Google Scholar 

  • Kretschmer M, Klose J, Kronstad JW (2012a) Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis. Eukaryot Cell 11:1055–1066

    Article  CAS  Google Scholar 

  • Kretschmer M, Wang J, Kronstad JW (2012b) Peroxisomal and mitochondrial β-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 11:1042–1054

    Article  CAS  Google Scholar 

  • Kumar S, Singh R, Williams CP, van der Klei IJ (2016) Stress exposure results in increased peroxisomal levels of yeast Pnc1 and Gpd1, which are imported via a piggy-backing mechanism. Biochim Biophys Acta (BBA)-Molecular Cell Res 1863:148–156

    Article  CAS  Google Scholar 

  • Lametschwandtner G, Brocard C, Fransen M, Van Veldhoven P, Berger J, Hartig A (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 273:33635–33643

    Article  CAS  Google Scholar 

  • Lazarow PB (2006) The import receptor Pex7p and the PTS2 targeting sequence. Biochim Biophys Acta (BBA)-Molecular Cell Res 1763:1599–1604

    Article  CAS  Google Scholar 

  • Lee MS, Mullen RT, Trelease RN (1997) Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes. Plant Cell 9:185–197

    Article  CAS  Google Scholar 

  • Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen X-Y, Siemsen T, Morgenstern B, Meinicke P, Reumann S (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23:1556–1572

    Article  CAS  Google Scholar 

  • Loenarz C, Sekirnik R, Thalhammer A, Ge W, Spivakovsky E, Mackeen MM, McDonough M, Cockman ME, Kessler BM, Ratcliffe PJ, Wolf A, Schofield CJ (2014) Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc Natl Acad Sci U. S. A 111:4019–4024

    Article  CAS  Google Scholar 

  • Loughran G, Chou M-Y, Ivanov IP, Jungreis I, Kellis M, Kiran AM, Baranov PV, Atkins JF (2014) Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 42:8928–8938

    Article  CAS  Google Scholar 

  • Managadze D, Würtz C, Wiese S, Meyer HE, Niehaus G, Erdmann R, Warscheid B, Rottensteiner H (2010) A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa. Proteomics 10:3222–3234

    Article  CAS  Google Scholar 

  • Matlin AJ, Clark F, Smith CWJ (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398

    Article  CAS  Google Scholar 

  • McNew JA, Goodman JM (1994) An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol 127:1245–1257

    Article  CAS  Google Scholar 

  • Menard L, Maughan D, Vigoreaux J (2014) The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? Biol (Basel) 3:623–644

    CAS  Google Scholar 

  • Mizuno Y, Kurochkin IV, Herberth M, Okazaki Y, Schönbach C (2008) Predicted mouse peroxisome-targeted proteins and their actual subcellular locations. BMC Bioinform 9:S16

    Article  Google Scholar 

  • Motley AM, Hettema EH, Ketting R, Plasterk R, Tabak HF (2000) Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. EMBO Rep 1:40–46

    Article  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    Article  CAS  Google Scholar 

  • Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F (2003a) Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 328:581–592

    Article  CAS  Google Scholar 

  • Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F et al (2003b) Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol 328:567–579

    Article  CAS  Google Scholar 

  • Nötzel C, Lingner T, Klingenberg H, Thoms S (2016) Identification of new fungal peroxisomal matrix proteins and revision of the PTS1 consensus. Traffic 17:1110–1124

    Article  Google Scholar 

  • Peraza-Reyes L, Berteaux-Lecellier V (2013) Peroxisomes and sexual development in fungi. Front. Physiol. 4:244

    Article  Google Scholar 

  • Pieuchot L, Jedd G (2012) Peroxisome assembly and functional diversity in eukaryotic microorganisms. Annu Rev Microbiol 66:237–263

    Article  CAS  Google Scholar 

  • Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal β-oxidation—a metabolic pathway with multiple functions. Biochim Biophys Acta 1763:1413–1426

    Article  CAS  Google Scholar 

  • Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608

    Article  CAS  Google Scholar 

  • Reumann S, Buchwald D, Lingner T (2012) PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins. Front Plant Sci 3:194

    Article  Google Scholar 

  • Rucktäschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta Biomembr 1808(892–900):3

    Google Scholar 

  • Salogiannis J, Egan MJ, Reck-Peterson SL (2016) Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J Cell Biol 212:289–296

    Article  CAS  Google Scholar 

  • Saryi NA, Hutchinson JD, Al-hejjaj MY, Sedelnikova S, Baker P, Hettema EH (2017) Pnc1 piggy-back import into peroxisomes relies on Gpd1 homodimerisation. Sci Rep 7:42579

    Article  Google Scholar 

  • Schäfer A, Kerssen D, Veenhuis M, Kunau W-H, Schliebs W (2004) Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Mol Cell Biol 24:8895–8906

    Article  Google Scholar 

  • Schlüter A, Fourcade S, Domènech-Estévez E, Gabaldón T, Huerta-Cepas J, Berthommier G, Ripp R, Wanders RJA, Poch O, Pujol A (2006) PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease. Nucleic Acids Res 35:D815–D822

    Article  Google Scholar 

  • Schueren F, Thoms S (2016) Functional translational readthrough: a systems biology perspective. PLoS Genet 12:e1006196

    Article  Google Scholar 

  • Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gärtner J, Thoms S (2014) Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Elife 3:e03640

    Article  Google Scholar 

  • Shimizu S, Ohkuma S (1993) Inorganic pyrophosphatase of clofibrate-induced rat liver peroxisomes. J Biochem 113:462–466

    Article  CAS  Google Scholar 

  • Sigrist CJA, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2012) New and continuing developments at PROSITE. Nucleic Acids Res 41:D344–D347

    Article  Google Scholar 

  • Smith JJ, Aitchison JD (2013) Peroxisomes take shape. Nat Rev Mol Cell Biol 14:803–817

    Article  CAS  Google Scholar 

  • Soundararajan S, Jedd G, Li X, Ramos-Pamploña M, Chua NH, Naqvi NI (2004) Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16:1564–1574

    Article  CAS  Google Scholar 

  • Stehlik T, Sandrock B, Ast J, Freitag J (2014) Fungal peroxisomes as biosynthetic organelles. Curr Opin Microbiol 22:8–14

    Article  CAS  Google Scholar 

  • Stiebler AC, Freitag J, Schink KO, Stehlik T, Tillmann BAM, Ast J, Bölker M (2014) Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLoS Genet 10:1–9

    Article  Google Scholar 

  • Stincone A, Prigione A, Cramer T, Wamelink M, Campbell K, Cheung E, Olin-Sandoval V, Grüning N-M, Krüger A, Tauqeer Alam M et al (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev 90:927–963

    Article  Google Scholar 

  • Strijbis K, Burg JF Visser W, den Berg M, Distel B (2012) Alternative splicing directs dual localization of Candida albicans 6-phosphogluconate dehydrogenase to cytosol and peroxisomes. FEMS Yeast Res

    Google Scholar 

  • Szewczyk E, Andrianopoulos A, Davis MA, Hynes MJ (2001) A single gene produces mitochondrial, cytoplasmic, and peroxisomal NADP-dependent isocitrate dehydrogenase in Aspergillus nidulans. J Biol Chem 276:2339–2345

    Article  Google Scholar 

  • Szöör B, Haanstra JR, Gualdrón-López M, Michels PA (2014) Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Curr Opin Microbiol 22:79–87

    Article  Google Scholar 

  • van der Klei IJ, Veenhuis M (2006a) Yeast and filamentous fungi as model organisms in microbody research. Biochim Biophys Acta 1763:1364–1373

    Article  Google Scholar 

  • van der Klei IJ, Veenhuis M (2006b) PTS1-independent sorting of peroxisomal matrix proteins by Pex5p. Biochim Biophys Acta Mol Cell Res 1763:1794–1800

    Article  Google Scholar 

  • Visser WF, Van Roermund CWT, Ijlst L, Waterham HR, Wanders RJA (2007) Metabolite transport across the peroxisomal membrane. Biochem J 401:365

    Article  CAS  Google Scholar 

  • Walton PA, Hill PE, Subramani S (1995) Import of stably folded proteins into peroxisomes. Mol Biol Cell 6:1253–1263

    Article  Google Scholar 

  • Wang Z-Y, Soanes DM, Kershaw MJ, Talbot NJ (2007) Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid β-oxidation during appressorium-mediated plant infection. Mol Plant-Microbe Interact 20:475–491

    Article  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    Article  CAS  Google Scholar 

  • Yogev O, Pines O (2011) Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochim Biophys Acta 1808:1012–1020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bölker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freitag, J., Stehlik, T., Stiebler, A.C., Bölker, M. (2018). The Obvious and the Hidden: Prediction and Function of Fungal Peroxisomal Matrix Proteins. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_6

Download citation

Publish with us

Policies and ethics