Skip to main content

Peroxisome Mitochondria Inter-relations in Plants

  • Chapter
  • First Online:
Proteomics of Peroxisomes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

A large amount of ultrastructural, biochemical and molecular analysis indicates that peroxisomes and mitochondria not only share the same subcellular space but also maintain considerable overlap in their proteins, responses and functions. Recent approaches using imaging of fluorescent proteins targeted to both organelles in living plant cells are beginning to show the dynamic nature of their interactivity. Based on the observations of living cells, mitochondria respond rapidly to stress by undergoing fission. Mitochondrial fission is suggested to release key membrane-interacting members of the FISSION1 and DYNAMIN RELATED PROTEIN3 families and appears to be followed by the formation of thin peroxisomal extensions called peroxules. In a model we present the peroxules as an intermediate state prior to the formation of tubular peroxisomes, which, in turn are acted upon by the constriction-related proteins released by mitochondria and undergo rapid constriction and fission to increase the number of peroxisomes in a cell. The fluorescent protein aided imaging of peroxisome-mitochondria interaction provides visual evidence for their cooperation in maintenance of cellular homeostasis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DRP3:

DYNAMIN RELATED PROTEIN 3

ER:

Endoplasmic reticulum

FIS1:

FISSION1

FP:

Fluorescent protein

JEP:

Juxtaposed elongated peroxisomes

MDVs:

Mitochondria derived vesicles

MOPs:

Mitochondria outer membrane derived protrusions

PMPs:

Peroxisomal membrane proteins

ROS:

Reactive Oxygen species

RNS:

Reactive Nitrogen species

TPA:

Tubular peroxisomal accumulations

References

  • Andrade-Navarro MA, Sanchez-Pulido L, McBride HM (2009) Mitochondrial vesicles: an ancient process providing new links to peroxisomes. Curr Opin Cell Biol 21:560–567

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arimura S, Tsutsumi N (2002) A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc Natl Acad Sci 99:5727–5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura S, Aida GP, Fujimoto M, Nakazono M, Tsutsumi N (2004a) Arabidopsis dynamin-like protein 2a (ADL2a), like ADL2b, is involved in plant mitochondrial division. Plant Cell Physiol 45:236–242

    Article  CAS  PubMed  Google Scholar 

  • Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004b) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci 101:7805–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura S, Fujimoto M, Doniwa Y, Kadoya N, Nakazono M, Sakamoto W, Tsutsumi N (2008) Arabidopsis ELONGATED MITOCHONDRIA1 is required for localization of DYNAMIN-RELATED PROTEIN3A to mitochondrial fission sites. Plant Cell 20:1555–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aung K, Kaur N, Hu J (2014) Dynamin—related proteins in plants. Chapter 20. In: Brocard C, Hartig A (eds) Molecular machines involved in peroxisome biogenesis and maintenance. Springer-Verlag, Wien, pp 439–460

    Google Scholar 

  • Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K Is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton KA, Jaipargas EA, Griffiths N, Mathur J (2014) Live-imaging of peroxisomes and peroxules in plants. In: Brocard C, Hartig A (eds) Molecular machines involved in peroxisome biogenesis and maintenance. Springer-Verlag, Wien, pp 233–253

    Google Scholar 

  • Barton K, Mathur N, Mathur J (2013) Simultaneous live-imaging of peroxisomes and the ER in plant cells suggests contiguity but no luminal continuity between the two organelles. Front Physiol 24:196

    Google Scholar 

  • Barton KA, Wozny MR, Mathur N, Jaipargas EA, Mathur J (2017) Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells. J Cell Sci pii:jcs202275. https://doi.org/10.1242/jcs.202275

    Article  CAS  Google Scholar 

  • Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microscop Res Tech 27:198–219

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2011) Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. In Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers, Enfield, NH, pp 1–30

    Google Scholar 

  • Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1:298–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowes T, Gupta RS (2008) Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission. Biochem Biophys Res Commun 376:40–45

    Article  CAS  PubMed  Google Scholar 

  • Braschi E, Goyon V, Zunino R, MohantyA XuL, McBride HM (2010) Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr Biol 20:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Brocard C (2014) Peroxisome proliferation: vesicles, reticulons and ER to peroxisome contact sites. Chapter 18. In: Brocard C, Hartig A (eds) Molecular machines involved in peroxisome biogenesis and maintenance. Springer-Verlag, Wien, pp 403–424

    Google Scholar 

  • Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D (2014) The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 26:3148–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chazotte B (2011) Labeling mitochondria with MitoTracker dyes. Cold Spring Harb Protoc

    Google Scholar 

  • Choi W-G, Swanson SJ, Gilroy S (2012) High-resolution imaging of Ca2+ , redox status, ROS and pH using GFP biosensors. Plant J 70:118–128

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Palma JM, del Río LA (2013) Peroxisomes as cell generators of reactive nitrogen species (RNS) signal molecules. Subcell Biochem 69:283–298

    Article  CAS  PubMed  Google Scholar 

  • Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, SchiavoFL (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca (2+) -dependent scavenging system. Plant J 62:760–772

    Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci 97:3718–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delille HK, Agricola B, Guimaraes SC, Borta H, Lüers GH, Fransen M, Schrader M (2010) Pex11pβ-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 123:2750–2762

    Article  CAS  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • des Francs-Small CC, de Longevialle AF, Li Y, Lowe E, Sandra K, Tanz SK, Smith C, Michael W, Bevan MW, Small I (2014) The pentatricopeptide repeat proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 are involved in the splicing of the multipartite nad5 transcript encoding a subunit of mitochondrial complex I. Plant Physiol 165:1409–1416

    Google Scholar 

  • Foissner I (2004) Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells. Protoplasma 224:145–157

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto M, Arimura SI, Mano S, Kondo M, Saito C, Ueda T, Nakazono M, Nakano A, Nishimura M, Tsutsumi N (2009) Arabidopsis dynamin-related proteins DRP3A and DRP3B are functionally redundant in mitochondrial fission but have distinct roles in peroxisomal fission. Plant J 58:388–400

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Himmelspach R, Ward J, Whittington A, Hasenbein N, Liu C, Truong TT, Galway ME, Mansfield SD, Hocart CH, Wasteneys GO (2013) The anisotropy1 D604 N mutation in the Arabidopsis Cellulose Synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes. Plant Physiol 162:74–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Metz J, Teanby NA, Ward AD, Botchway SW, Coles B, Pollard MR, Sparkes I (2016) In vivo quantification of peroxisome tethering to chloroplasts in tobacco epidermal cells using optical tweezers. Plant Physiol 170:263–272

    Article  CAS  PubMed  Google Scholar 

  • Gechev T, Petrov V, Minkov I (2010) Reactive oxygen species and programmed cell death. In: Gupta DS (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers, Enfield, NH, pp 65–78

    Chapter  Google Scholar 

  • Gehl B, Lee C-P, Bota P, Blatt MR, Sweetlove LJ (2014) An Arabidopsis Stomatin-Like Protein affects mitochondrial respiratory supercomplex organization. Plant Physiol 164:1389–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto S, Mano S, Nakamori C, Nishimura M (2011) Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 is a peroxin that recruits the PEX1-PEX6 complex to peroxisomes. Plant Cell 23:1573–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffing LR (2011) Laser stimulation of the chloroplast/endoplasmic reticulum nexus in tobacco transiently produces protein aggregates (boluses) within the endoplasmic reticulum and stimulates local ER remodeling. Mol Plant 4:886–895

    Article  CAS  PubMed  Google Scholar 

  • Gunning BES, Steer MW (1986) Plant cell biology: an ultrastructural approach. Steer, M.W. University College, Dublin, OH

    Google Scholar 

  • Heymann JAW, Hinshaw JE (2009) Dynamins at a glance. J Cell Sci 122:3427–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, Nunnari J (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170:1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaipargas EA, Barton KA, Mathur N, Mathur J (2015) Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics. Front Plant Sci 6:783. https://doi.org/10.3389/fpls.2015.00783

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaipargas EA, Mathur N, Bou Daher F, Wasteneys GO, Mathur J (2016) High light intensity leads to increased Peroxule-Mitochondria interactions in plants. Front Cell Dev Biol 4:6. https://doi.org/10.3389/fcell.2016.00006

    Article  PubMed  PubMed Central  Google Scholar 

  • Jedd G, Chua NH (2002) Visualization of peroxisomes in living plant cells reveals actomyosin-dependent cytoplasmic streaming and peroxisome budding. Plant Cell Physiol 43:384–392

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Tanaka A, Fujiki Y (2007) Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp Cell Res 313:1675–1686

    Article  CAS  PubMed  Google Scholar 

  • Koch A, Schneider G, Luers GH, Schrader M (2004) Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J Cell Sci 117:3995–4006

    Article  CAS  PubMed  Google Scholar 

  • Koch A, Yoon Y, Bonekamp NA, McNiven MA, Schrader M (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch J, Kornelija P, Huber A, Ellinger A, Hartig A, Kragler F, Brocard C (2010) PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. J Cell Sci 123:3389–3400

    Article  CAS  PubMed  Google Scholar 

  • Köhler RH, Zipfel WR, Webb WW, Hanson MR (1997a) The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 11:613–621

    Article  PubMed  Google Scholar 

  • Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997b) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042

    Article  PubMed  Google Scholar 

  • Li X, Gould SJ (2003) The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 278:17012–17020

    Article  CAS  PubMed  Google Scholar 

  • Lichtscheidl IK, Url WG (1990) Organization and dynamics of cortical endoplasmic reticulum in inner epidermal cells of onion bulb scales. Protoplasma 157:203–215

    Article  Google Scholar 

  • Lin Y, Cluette-Brown JE, Goodman HM (2004) The peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis. Plant Physiol 135:814–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingard MJ, Trelease RN (2006) Five Arabidopsis peroxin 11 homologs individually promote peroxisome elongation, duplication, or aggregation. J Cell Sci 119:1961–1972

    Article  CAS  PubMed  Google Scholar 

  • Logan DC (2006) The mitochondrial compartment. J Expt Bot 57:1225–1243

    Article  CAS  Google Scholar 

  • Logan DC (2010) Mitochondrial fusion, division and positioning in plants. Biochem Soc Trans 38:789–795

    Article  CAS  PubMed  Google Scholar 

  • Logan DC, Leaver CJ (2000) Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J Exp Bot 51:865–871

    Article  CAS  PubMed  Google Scholar 

  • Logan DC, Scott I, Tobin AK (2004) ADL2a, like ADL2b, is involved in the control of higher plant mitochondrial morphology. J Exp Bot 55:783–785

    Article  CAS  PubMed  Google Scholar 

  • Loro G, Drago I, Pozzan T, Schiavo FL, Zottini M, Costa A (2012) Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. Plant J 71:1–13

    Article  CAS  PubMed  Google Scholar 

  • Mano S, Nakamori C, Hayashi M, Kato A, Kondo M, Nishimura M (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin-dependent movement. Plant Cell Physiol 43:331–341

    Article  CAS  PubMed  Google Scholar 

  • Mano S, Nakamori C, Kondo M, Hayashi M, Nishimura M (2004) An Arabidopsis dynamin-related protein, DRP3A, controls both peroxisomal and mitochondrial division. Plant J 38:487–498

    Article  CAS  PubMed  Google Scholar 

  • Margittai E, Löw P, Szarka A, Csala M, Benedetti A, Bánhegyi G (2008) Intraluminal hydrogen peroxide induces a permeability change of the endoplasmic reticulum membrane. FEBS 582:4131–4136

    Article  CAS  Google Scholar 

  • Mathur J, Radhamony R, Sinclair AM, Donoso A, Dunn N, Roach E, Radford D, Mohaghegh PM, Logan DC, Kokolic K, Mathur N (2010) mEosFP-based green-to-red photo-convertible subcellular probes for plants. Plant Physiol 154:1573–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur J, Mammone A, Barton KA (2012) Organelle extensions in plant cells. J Int Plant Biol 54:851–867

    CAS  Google Scholar 

  • Mathur J, Mathur N, Hülskamp M (2002) Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128:1031–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26

    Article  CAS  PubMed  Google Scholar 

  • Meves F (1904) Über das vorkommen von mitochondrion bezw. Chrondromiten der Pflanzen zellen. Ber deutsch Bot Ges 22:264–286

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Mohanty A, McBride HM (2013) Emerging roles of mitochondria in the evolution, biogenesis, and function of peroxisomes. Front Physiol 4:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, Andrade-Navarro MA, McBride HM (2008) Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18:102–108

    Article  CAS  PubMed  Google Scholar 

  • Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M (2007) Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant Cell Physiol 48:763–774

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, de Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S, Hu J (2007) The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. Plant Cell 19:333–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peremyslov VV, Klocko AL, Fowler JE, Dolja VV (2012) Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin. Front Plant Sci 3:184. https://doi.org/10.3389/fpls.2012.00184

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitts KR, Yoon Y, Krueger EW, McNiven MA (1999) The dynamin—like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Biol Cell 10:4403–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokhnevsky AI, Peremyslov VV, Dolja VV (2008) Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci 105:19744–19749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan S, Switzenberg R, Reumann S, Hu J (2010) In vivo subcellular targeting analysis validates a novel peroxisome targeting signal type 2 and the peroxisomal localization of two proteins with putative functions in defense in Arabidopsis. Plant Signal Behav 5:151–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Sparkes I, Hawes C, del Río LA, Sandalio LM (2009) Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Rad Biol Med 47:1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Sanz-Fernández M, Hu J, Sandalio LM (2016) Peroxisomes extend Peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol 171:1665–1674

    PubMed  PubMed Central  Google Scholar 

  • Roux A, Koster G, Lenz M, Sorre B, Manneville JB, Nassoy P, Bassereau P (2010) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci 107:4141–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruberti C, Costa A, Pedrazzini E, Lo Schiavo F, Zottini M (2014) FISSION1A, an Arabidopsis tail-anchored protein, is localized to three subcellular compartments. Mol Plant 7:1393–1396

    Article  CAS  PubMed  Google Scholar 

  • Schattat M, Barton K, Baudisch B, Klösgen RB, Mathur J (2011) Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol 155:1667–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR, Dunn N, Greenwood JS, Mathur J (2012) Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell 24:1465–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader M, Thiemann M, Fahimi HD (2003) Peroxisomal motility and interaction with microtubules. Microsc Res Techniq 61:171–178

    Article  CAS  Google Scholar 

  • Schrader M (2006) Shared components of mitochondrial and peroxisomal division. Biochim Biophys Acta Mol Cell Res 1763:531–541

    Article  CAS  Google Scholar 

  • Schrader M, Yoon Y (2007) Mitochondria and peroxisomes: are the “Big Brother” and the “Little Sister” closer than assumed? BioEssays 29:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Schumann U, Subramani S (2008) Special delivery from mitochondria to peroxisomes. Trends Cell Biol 18:253–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzlander M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta 1787:468–475

    Article  PubMed  CAS  Google Scholar 

  • Schwarzländer M, Logan DC, Fricker MD, Sweetlove LJ (2011) The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochem J 437:381–387

    Article  PubMed  CAS  Google Scholar 

  • Scott I, Sparkes IA, Logan DC (2007) The missing link: inter-organellar connections in mitochondria and peroxisomes? Trends Plant Sci 12:380–381

    Article  CAS  PubMed  Google Scholar 

  • Scott I, Tobin AK, Logan DC (2006) BIGYIN, an orthologue of human and yeast FIS1 genes functions in the control of mitochondrial size and number in Arabidopsis thaliana. J Exp Bot 57:1275–1280

    Article  CAS  PubMed  Google Scholar 

  • Seguí-Simarro JM, Coronado MJ, Staehelin LA (2008) The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol 148:1380–1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population:ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755

    Article  CAS  PubMed  Google Scholar 

  • Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J (2009) Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59:231–242

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A (2003) An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. Plant Physiol 133:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparkes IA, Hawes C, Baker A (2005) AtPEX2 and AtPEX10 are targeted to peroxisomes independently of known endoplasmic reticulum trafficking routes. Plant Physiol 139:690–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparkes I, Gao H (2014) Plant peroxisome dynamics: movement, positioning and connections. Chapter 21. In: Brocard C, Hartig A (eds) Molecular Machines involved in peroxisome biogenesis and maintenance. Springer-Verlag, Wien, pp 461–477

    Google Scholar 

  • Stickens D, Verbelen JP (1996) Spatial structure of mitochondria and ER denotes changes in cell physiology of cultured tobacco protoplasts. Plant J 9:85–92

    Article  CAS  Google Scholar 

  • Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Sugiura A, Mattie S, Prudent J, McBride HM (2017) Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542:251–254

    Article  CAS  PubMed  Google Scholar 

  • Thoms S, Erdmann R (2005) Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J 272:5169–5181

    Article  CAS  PubMed  Google Scholar 

  • Tieu Q, Nunnari J (2000) Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol 151:353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida M, Ohtani S, Ichinose M, Sugita C, Sugita M (2011) The PPR-DYW proteins are required for RNA editing of rps14, cox1 and nad5 transcripts in Physcomitrella patens mitochondria. FEBS Lett 585:2367–2371

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci 107:6894–6899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Gestel K, Köhler RH, Verbelen JP (2002) Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot 53:659–667

    Article  PubMed  Google Scholar 

  • Van Gestel K, Verbelen JP (2002) Giant mitochondria are a response to low oxygen pressure in cells of tobacco (Nicotiana tabacum L.). J Exp Bot 53:1215–1218

    Article  PubMed  Google Scholar 

  • Wang B, Apanasets O, Nordgren M, Fransen M (2014) Dissecting peroxisome-mediated signaling pathways: a new and exciting research field In: Brocard C, Hartig A (eds) Molecular machines involved in peroxisome biogenesis and maintenance. Wien, Springer-Verlag, pp 255–273

    Google Scholar 

  • Wiemer EAC, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S (1997) Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J Cell Biol 136:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner S, Behera S, De Bortoli S, Logan DC, Fuchs P, Carraretto L, Teardo E, Cendron L, Nietzel T, Füßl M, Doccula FG (2015) The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in Arabidopsis. Plant Cell 27:3190–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward AW, Bartel B (2005) The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell 16:573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Sun Y, Zhao Y, Zhang J, Luo L, Li M, Wang J, Yu H, Liu G, Yang L, Xiong G (2015) Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res 25:621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita A, Fujimoto M, Katayama K, Yamaoka S, Tsutsumi N, Arimura S (2016) Formation of mitochondrial outer membrane derived protrusions and vesicles in Arabidopsis Thaliana. PLoS ONE 11:e0146717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga K, Arimura S, Niwa Y, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005) Mitochondrial behaviour in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Ann Bot 96:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Hu JP (2008) FISSION1A and FISSION1B proteins mediate the fission of peroxisomes and mitochondria in Arabidopsis. Mol Plant 1:1036–1047

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hu J (2009) Two small protein families, DYNAMIN-RELATED PROTEIN3 and FISSION1, are required for peroxisome fission in Arabidopsis. Plant J 57:146–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research funding to the JM by the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep Mathur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathur, J., Shaikh, A., Mathur, N. (2018). Peroxisome Mitochondria Inter-relations in Plants. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_18

Download citation

Publish with us

Policies and ethics