Skip to main content

Peroxisomes and Their Central Role in Metabolic Interaction Networks in Humans

  • Chapter
  • First Online:
Proteomics of Peroxisomes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

Peroxisomes catalyze a number of essential metabolic functions and impairments in any of these are usually associated with major clinical signs and symptoms. In contrast to mitochondria which are autonomous organelles that can catalyze the degradation of fatty acids, certain amino acids and other compounds all by themselves, peroxisomes are non-autonomous organelles which are highly dependent on the interaction with other organelles and compartments to fulfill their role in metabolism. This includes mitochondria, the endoplasmic reticulum, lysosomes, and the cytosol. In this paper we will discuss the central role of peroxisomes in different metabolic interaction networks in humans, including fatty acid oxidation, ether phospholipid biosynthesis, bile acid synthesis, fatty acid alpha-oxidation and glyoxylate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACBP:

Acyl-CoA binding protein

AGPS:

Alkylglycerone-3-phosphate synthase

AMACR:

2-Methylacyl-CoA racemase

ABCD:

ATP-binding cassette protein, Family D

ACOT:

Acyl-CoA thioesterase

BAAT:

Bile acid-CoA: amino acid transferase

BSEP:

Bile salt export pump

CACT:

Carnitine acylcarnitine translocase

CRAT:

Carnitine acetyltransferase

CROT:

Carnitine octanoyltransferase

DCA:

Dicarboxylic acid

DHA:

Docosahexaenoic acid

DHCA:

Dihydroxycholestanoic acid

ELOVL:

Elongation of very long-chain acids protein

EPL:

Ether phospholipid

FA:

Fatty acid

FAR1/2:

Fatty acyl-CoA reductase (fatty alcohol forming) 1/2

FFAT:

Phenylalanine Phenylalanine Acidic Tract

GR/HPR:

Glyoxylate reductase/hydroxypyruvate reductase

GNPAT:

Glycerone-3-phosphate acyltransferase

HAO1:

Hydroxy acid oxidase 1 (glycolate oxidase)

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

THCA:

Trihydroxycholestanoic acid

PexRAP:

Peroxisomal reductase activating PPARgamma

VAP:

Vesicle associated protein

References

  • Braverman NE, Moser AB (1822) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 9:1442–1452

    Google Scholar 

  • Buchert R, Tawamie H, Smith C, Uebe S, Innes AM, Al Hallak B, Ekici AB, Sticht H, Schwarze B, Lamont RE, Parboosingh JS, Bernier FP, Abou Jamra R (2014) A peroxisomal disorder of severe intellectual disability, epilepsy, and cataracts due to fatty acyl-CoA reductase 1 deficiency. Am J Hum Genet 95(5):602–610

    Article  CAS  Google Scholar 

  • Costello JL, Castro IG, Hacker C, Schrader TA, Metz J, Zeuschner D, Azadi AS, Godinho LF, Costina V, Findeisen P, Manner A, Islinger M, Schrader M (2017) ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J Cell Biol 216(2):331–342

    Article  CAS  Google Scholar 

  • Dean JM, Lodhi IJ (2017) Structural and functional roles of ether lipids. Protein Cell

    Google Scholar 

  • Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323(Pt 1):1–12

    Article  CAS  Google Scholar 

  • Ferdinandusse S, Mulders J, Denis S, Dacremont G, Waterham HR, Wanders RJ (1999) Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal beta-oxidation of branched-chain fatty acids. Biochem Biophys Res Commun 263(1):213–218

    Article  CAS  Google Scholar 

  • Ferdinandusse S, Denis S, Mooijer PA, Zhang Z, Reddy JK, Spector AA, Wanders RJA (2001) Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J Lipid Res 42(12):1987–1995

    CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Dacremont G, Wanders RJA (2003) Studies on the metabolic fate of n-3 polyunsaturated fatty acids. J Lipid Res 44(10):1992–1997

    Article  CAS  Google Scholar 

  • Ferdinandusse S, Denis S, van Roermund CWT, Wanders RJA, Dacremont G (2004) Identification of the peroxisomal {beta}-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J Lipid Res 45(6):1104–1111

    Article  CAS  Google Scholar 

  • Ferdinandusse S, Denis S, Hogenhout EM, Koster J, van Roermund CWT, IJlst L, Moser AB, Wanders RJA, Waterham HR (2007) Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency. Hum Mutat 28:904–912

    Article  CAS  Google Scholar 

  • Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, Moser AB, Visser WF, Gulluoglu M, Durmaz O, Demirkol M, Waterham HR, Gokcay G, Wanders RJ, Valle D (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24(2):361–370

    Article  CAS  Google Scholar 

  • Ferdinandusse S, Falkenberg KD, Koster J, Mooyer PA, Jones R, van Roermund CWT, Pizzino A, Schrader M, Wanders RJA, Vanderver A, Waterham HR (2017) ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism. J Med Genet 54(5):330–337

    Article  CAS  Google Scholar 

  • Frolov A, Cho TH, Billheimer JT, Schroeder F (1996) Sterol carrier protein-2, a new fatty acyl coenzyme A-binding protein. J Biol Chem 271(50):31878–31884

    Article  CAS  Google Scholar 

  • Frolov A, Cho TH, Murphy EJ, Schroeder F (1997) Isoforms of rat liver fatty acid binding protein differ in structure and affinity for fatty acids and fatty acyl CoAs. Biochemistry 36(21):6545–6555

    Article  CAS  Google Scholar 

  • Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H, McIntosh AL, Martin GG, Chao H, Kier AB, Schroeder F (2001) Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 40(6):498–563

    Article  CAS  Google Scholar 

  • Gossett RE, Frolov AA, Roths JB, Behnke WD, Kier AB, Schroeder F (1996) Acyl-CoA binding proteins: multiplicity and function. Lipids 31(9):895–918

    Article  CAS  Google Scholar 

  • Heinzer AK, Watkins PA, Lu JF, Kemp S, Moser AB, Li YY, Mihalik S, Powers JM, Smith KD (2003) A very long-chain acyl-CoA synthetase-deficient mouse and its relevance to X-linked adrenoleukodystrophy. Hum Mol Genet 12(10):1145–1154

    Article  CAS  Google Scholar 

  • Hua R, Cheng D, Coyaud E, Freeman S, Di Pietro E, Wang Y, Vissa A, Yip CM, Fairn GD, Braverman N, Brumell JH, Trimble WS, Raught B, Kim PK (2017) VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J Cell Biol 216(2):367–377

    Article  CAS  Google Scholar 

  • Hunt MC, Alexson SE (2002) The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog Lipid Res 41(2):99–130

    Article  CAS  Google Scholar 

  • Hunt MC, Rautanen A, Westin MA, Svensson LT, Alexson SE (2006) Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs. FASEB J 20(11):1855–1864

    Article  CAS  Google Scholar 

  • James PF, Lake AC, Hajra AK, Larkins LK, Robinson M, Buchanan FG, Zoeller RA (1997) An animal cell mutant with a deficiency in acyl/alkyl- dihydroxyacetone-phosphate reductase activity. Effects on the biosynthesis of ether-linked and diacyl glycerolipids. J Biol Chem 272(38):23540–23546

    Article  CAS  Google Scholar 

  • Kihara A (2012) Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem 152(5):387–395

    Article  CAS  Google Scholar 

  • Kishimoto Y, Moser HW, Kawamura N, Platt M, Pallante SL, Fenselau C (1980) Adrenoleukodystrophy: evidence that abnormal very long chain fatty acids of brain cholesterol esters are of exogenous origin. Biochem Biophys Res Commun 96(1):69–76

    Article  CAS  Google Scholar 

  • LaBelle EF Jr, Hajra AK (1974) Purification and kinetic properties of acyl and alkyl dihydroxyacetone phosphate oxidoreductase. J Biol Chem 249(21):6936–6944

    CAS  PubMed  Google Scholar 

  • Lazarow PB (1978) Rat liver peroxisomes catalyze the beta oxidation of fatty acids. J Biol Chem 253(5):1522–1528

    CAS  PubMed  Google Scholar 

  • Leighton F, Bergseth S, Rortveit T, Christiansen EN, Bremer J (1989) Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation. J Biol Chem 264(18):10347–10350

    CAS  PubMed  Google Scholar 

  • Lodhi IJ, Yin L, Jensen-Urstad AP, Funai K, Coleman T, Baird JH, El Ramahi MK, Razani B, Song H, Fu-Hsu F, Turk J, Semenkovich CF (2012) Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARgamma activation to decrease diet-induced obesity. Cell Metab 16(2):189–201

    Article  CAS  Google Scholar 

  • Malheiro AR, da Silva TF, Brites P (2015) Plasmalogens and fatty alcohols in rhizomelic chondrodysplasia punctata and Sjogren-Larsson syndrome. J Inherit Metab Dis 38(1):111–121

    Article  CAS  Google Scholar 

  • McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F (1999) Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 40(8):1371–1383

    CAS  PubMed  Google Scholar 

  • McGarry JD (2001) Travels with carnitine palmitoyltransferase I: from liver to germ cell with stops in between. Biochem Soc Trans 29(Pt 2):241–245

    Article  CAS  Google Scholar 

  • Mihalik SJ, Steinberg SJ, Pei Z, Park J, Kim dG, Heinzer AK, Dacremont G, Wanders RJA, Cuebas DA, Smith KD, Watkins PA (2002) Participation of two members of the very long-chain acyl-CoA synthetase family in bile acid synthesis and recycling. J Biol Chem 277(27):24771–24779

    Article  CAS  Google Scholar 

  • Naganuma T, Kihara A (2014) Two modes of regulation of the fatty acid elongase ELOVL6 by the 3-ketoacyl-CoA reductase KAR in the fatty acid elongation cycle. PLoS One 9(7):e101823

    Article  Google Scholar 

  • Ofman R, el Mrabet L, Dacremont G, Spijer D, Wanders RJA (2002) Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved. Biochem Biophys Res Commun 290(2):629–634

    Article  CAS  Google Scholar 

  • Ofman R, Dijkstra IM, van Roermund CW, Burger N, Turkenburg M, A. vC, van Engen CE, Wanders RJA, Kemp S (2010) The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol Med 2(3):90–97

    Article  CAS  Google Scholar 

  • Pellicoro A, van den Heuvel FA, Geuken M, Moshage H, Jansen PL, Faber KN (2007) Human and rat bile acid-CoA:amino acid N-acyltransferase are liver-specific peroxisomal enzymes: implications for intracellular bile salt transport. Hepatology 45(2):340–348

    Article  CAS  Google Scholar 

  • Prydz K, Kase BF, Bjorkhem I, Pedersen JI (1988) Subcellular localization of 3 alpha, 7 alpha-dihydroxy- and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoyl-coenzyme A ligase(s) in rat liver. J Lipid Res 29(8):997–1004

    CAS  PubMed  Google Scholar 

  • Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H, Nave KA, Wieland F, Gorgas K, Just WW (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum Mol Genet 12(15):1881–1895

    Article  CAS  Google Scholar 

  • Russell DW (2009) Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res 50(Suppl):S120–S125

    Article  Google Scholar 

  • Salido E, Pey AL, Rodriguez R, Lorenzo V (2012) Primary hyperoxalurias: Disorders of glyoxylate detoxification. Biochim Biophys Acta 1822:1453–1464

    Article  CAS  Google Scholar 

  • Schepers L, Van Veldhoven PP, Eyssen HJ, Mannaerts GP (1989) Separate peroxisomal oxidases for long-chain acyl-CoA and trihydroxycoprostanoyl-CoA. Biochem Soc Trans 17(6):1076–1076

    Article  CAS  Google Scholar 

  • Schroeder F, Huang H, Hostetler HA, Petrescu AD, Hertz R, Bar-Tana J, Kier AB (2005) Stability of fatty acyl-coenzyme A thioester ligands of hepatocyte nuclear factor-4alpha and peroxisome proliferator-activated receptor-alpha. Lipids 40(6):559–568

    Article  CAS  Google Scholar 

  • Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP (1995) Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 36(12):2471–2477

    CAS  PubMed  Google Scholar 

  • Steinberg SJ, Wang SJ, Kim DG, Mihalik SJ, Watkins PA (1999) Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Commun 257:615–621

    Article  CAS  Google Scholar 

  • Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, Greenlief CM, Yao JK, Lee JC, Beversdorf DQ (2017) Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fatty Acids

    Google Scholar 

  • Tidhar R, Futerman AH (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta 11:2511–2518

    Google Scholar 

  • Vamecq J, de Hoffmann E, Van Hoof F (1985) The microsomal dicarboxylyl-CoA synthetase. Biochem J 230(3):683–693

    Article  CAS  Google Scholar 

  • Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51(10):2863–2895

    Article  Google Scholar 

  • Vaz FM, Ferdinandusse S (2017) Bile acid analysis in human disorders of bile acid biosynthesis. Mol Aspects Med 56:10–24

    Article  CAS  Google Scholar 

  • Verhoeven NM, Roe DS, Kok RM, Wanders RJA, Jakobs C, Roe C (1998) Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J Lipid Res 39:66–74

    CAS  PubMed  Google Scholar 

  • Wanders RJA, Waterham HR (2006) Biochemistry of mamalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  Google Scholar 

  • Wanders RJA, Denis S, van Roermund CWT, Jakobs C, ten Brink HJ (1992a) Characteristics and subcellular localization of pristanoyl-CoA synthetase in rat liver. Biochim Biophys Acta 1125(3):274–279

    Article  CAS  Google Scholar 

  • Wanders RJA, Schumacher H, Heikoop J, Schutgens RBH, Tager JM (1992b) Human dihydroxyacetonephosphate acyltransferase deficiency: a new peroxisomal disorder. J Inherit Metab Dis 15(3):389–391

    Article  CAS  Google Scholar 

  • Wanders RJA, Dekker C, Horvath VA, Schutgens RBH, Tager JM, Van Laer P, Lecoutere D (1994) Human alkyldihydroxyacetonephosphate synthase deficiency: a new peroxisomal disorder. J Inherit Metab Dis 17(3):315–318

    Article  CAS  Google Scholar 

  • Wanders RJA, Komen JC, Ferdinandusse S (2011) Phytanic acid metabolism in health and disease. Biochim Biophys Acta 1811:498–507

    Article  CAS  Google Scholar 

  • Waterham HR, Ferdinandusse S, Wanders RJ (2016) Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 1863(5):922–933

    Article  CAS  Google Scholar 

  • Westin MA, Hunt MC, Alexson SE (2005) The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate production in peroxisomes. J Biol Chem 280(46):38125–38132

    Article  CAS  Google Scholar 

  • Westin MA, Hunt MC, Alexson SE (2008) Short- and medium-chain carnitine acyltransferases and acyl-CoA thioesterases in mouse provide complementary systems for transport of beta-oxidation products out of peroxisomes. Cell Mol Life Sci 65(6):982–990

    Article  CAS  Google Scholar 

  • Wierzbicki AS, Sankaralingam A, Lumb PJ, Hardman TC, Sidey MC, Gibberd FB (1999) Transport of phytanic acid on lipoproteins in Refsum disease. J Inherit Metab Dis 22(1):29–36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jos Ruiter for preparation of the figures and Maddy Festen for expert preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. A. Wanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wanders, R.J.A., Waterham, H.R., Ferdinandusse, S. (2018). Peroxisomes and Their Central Role in Metabolic Interaction Networks in Humans. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_15

Download citation

Publish with us

Policies and ethics