Skip to main content

The Proteome of Fruit Peroxisomes: Sweet Pepper (Capsicum annuum L.) as a Model

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

Despite of their economical and nutritional interest, the biology of fruits is still little studied in comparison with reports of other plant organs such as leaves and roots. Accordingly, research at subcellular and molecular levels is necessary not only to understand the physiology of fruits, but also to improve crop qualities. Efforts addressed to gain knowledge of the peroxisome proteome and how it interacts with the overall metabolism of fruits will provide tools to be used in breeding strategies of agricultural species with added value. In this work, special attention will be paid to peroxisomal proteins involved in the metabolism of reactive oxygen species (ROS) due to the relevant role of these compounds at fruit ripening. The proteome of peroxisomes purified from sweet pepper (Capsicum annuum L.) fruit is reported, where an iron-superoxide dismutase (Fe-SOD) was localized in these organelles, besides other antioxidant enzymes such as catalase and a Mn-SOD, as well as enzymes involved in the metabolism of carbohydrates, malate, lipids and fatty acids, amino acids, the glyoxylate cycle and in the potential organelles’ movements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACO:

Aconitase

ALDH:

Aldehyde dehydrogenase

FDH:

Formate dehydrogenase

GDC:

Glycine decarboxylase

MALDI-TOF/TOF:

Matrix-assisted laser desorption/ionization-time of flight

NO:

Nitric oxide

PGK:

Phosphoglycerate kinase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Álvarez de Morales P, Jiménez A, Chaki M, Bonilla-Valverde D, Campos MJ, del Río LA, Sevilla F, Corpas FJ, Palma JM (2011) Proteomics of pepper (Capsicum annuum L.) fruits during ripening. In: XXIV Scandinavian Plant Physiology Society (SPPS) Congress, Stavanger, Norway, Abstract Book

    Google Scholar 

  • Ast J, Stiebler AC, Freitag J, Bölker M (2013) Dual targeting of peroxisomal proteins. Front Physiol/Integr Physiol 4:297

    Google Scholar 

  • Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: β-oxidation in signalling and development. Trends Plant Sci 11:124–132

    Article  CAS  Google Scholar 

  • Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Mohamed Zouine M, Alain Latché A, Mondher Bouzayen M, Pech J-C (2010) Characteristics of the tomato chromoplast revealed by proteomic analysis. J Exp Bot 61:2413–2431

    Article  CAS  Google Scholar 

  • Barsan C, Zouine M, Maza E, Bian W, Egea I, Rossignol M, Bouyssie D, Pichereaux C, Purgatto E, Bouzayen M, Latché A, Pech J-C (2012) Proteomic analysis of chloroplast to chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiol 160:708–725

    Article  CAS  PubMed  Google Scholar 

  • Barsan C, Kuntz M, Pech JC (2017) Isolation of chromoplasts and suborganellar compartments from tomato and bell pepper fruit. Methods Mol Biol 1511:61–71

    Article  CAS  Google Scholar 

  • Bauer S, Morris MT (2017) Glycosome biogenesis in Trypanosomes and the de novo dilemma. PLoS Negl Trop Dis 11:e0005333

    Article  PubMed  Google Scholar 

  • Bianchetti RE, Cruz AB, Oliveira BS, Demarco D, Purgatto E, Pereira Peres LEP, Rossi M, Freschi L (2017) Phytochromobilin deficiency impairs sugar metabolism through the regulation of cytokinin and auxin signaling in tomato fruits. Sci Reports 7:7822

    Article  Google Scholar 

  • Blattner J, Helfert S, Michels P, Clayton C (1998) Compartmentation of phosphoglycerate kinase in Trypanosoma brucei plays a critical role in parasite energy metabolism. Proc Natl Acad Sci USA 95:11596–11600

    Article  CAS  Google Scholar 

  • Bowler MW (2013) Conformational dynamics in phosphoglycerate kinase, an open and shut case? FEBS Lett 587:1878–1883

    Article  CAS  PubMed  Google Scholar 

  • Bruley C, Dupierris V, Salvi D, Rolland N, Ferro M (2012) AT_CHLORO: a chloroplast protein database dedicated to sub-plastidial localization. Front Plant Sci 3:205

    Article  PubMed  Google Scholar 

  • Bussell JD, Behrens C, Ecke W, Eubel H (2013) Arabidopsis peroxisome proteomics. Front Plant Sci 4:101

    Google Scholar 

  • Camejo D, Jiménez A, Palma JM, Sevilla F (2015) Proteomic identification of mitochondrial carbonylated proteins in two maturation stages of pepper fruits. Proteomics 15:2634–2642

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Álvarez de Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM (2015) Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Ann Bot 116:637–647

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxynitrite (ONOO-) is endogenously produced in Arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113:87–96

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Leterrier M, Begara-Morales JC, Valderrama R, Chaki M, López-Jaramillo J, Luque F, Palma JM, Padilla MN, Sánchez-Calvo B, Mata-Pérez C, Barroso JB (2013) Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochim Biophys Acta 1830:4981–4989

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Palma JM, Rodríguez-Ruiz M (2017) Plant peroxisomes: a nitro-oxidative cocktail. Redox Biol 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Freschi L, Rodríguez-Ruiz M, Mioto PT, González-Gordo S, Palma JM (2018) Nitro-oxidative metabolism during fruit ripening. J Exp Bot. https://doi.org/10.1093/jxb/erx453

    Article  PubMed  Google Scholar 

  • de la Torre F, Cañas RA, Pascual MB, Ávila C, Cánovas FM (2014) Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot 65:5527–5534

    Article  PubMed  Google Scholar 

  • Degu A, Hatew B, Nunes-Nesi A, Shlizerman L, Zur N, Katz E, Fernie AR, Blumwald E, Sadka A (2011) Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta 234:501–513

    Article  CAS  Google Scholar 

  • del Río LA, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57:1364–1376

    Google Scholar 

  • del Río LA, Sandalio LM, Altomare DA, Zilinskas BA (2003) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933

    Article  Google Scholar 

  • Droillard MJ, Paulin A (1990) Isozymes of superoxide dismutase in mitocondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol 94:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • du Choi S, Kim NH, Hwang BK (2014) Pepper mitochondrial FORMATE DEHYDROGENASE1 regulates cell death and defense responses against bacterial pathogens. Plant Physiol 166:1298–1311

    Article  PubMed  Google Scholar 

  • Du L, Song J, Forney C, Palmer LC, Fillmore S, Qi Z (2016) Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments. Hortic Res 3:16012

    Article  PubMed  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  CAS  PubMed  Google Scholar 

  • Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Grierson D (1993) Molecular genetics of tomato fruit ripening. Trends Genet 9:438–443

    Article  CAS  PubMed  Google Scholar 

  • Freitag J, Ast J, Bölker M (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485:522–525

    Article  CAS  Google Scholar 

  • Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T (2008) Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant 134:22–30

    Article  CAS  Google Scholar 

  • Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43:689–696

    Article  CAS  Google Scholar 

  • Ganguly A, Dixit R (2013) Mechanisms for regulation of plant kinesins. Current Op Plant Biol 16:704–709

    Article  CAS  Google Scholar 

  • Gerhardt B (1992) Fatty-acid degradation in plants. Prog Lipid Res 31:417–446

    Article  CAS  Google Scholar 

  • Gerhardt B, Fischer K, Balkenhohl TJ, Pohnert G, Kuhn H, Wasternack C, Feussner I (2005) Lipoxygenase-mediated metabolism of storage lipids in germinating sunflower cotyledons and beta-oxidation of (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid by the cotyledonary glyoxysomes. Planta 220:919–930

    Article  CAS  Google Scholar 

  • Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta 1863:1038–1048

    Article  CAS  Google Scholar 

  • Hamada T, Nagasaki-Takeuchi N, Kato T, Fujiwara M, Sonobe S, Fukao Y, Hashimoto T (2013) Purification and characterization of novel microtubule-associated proteins from Arabidopsis cell suspension cultures. Plant Physiol 163:1804–1816

    Article  CAS  PubMed  Google Scholar 

  • Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  CAS  PubMed  Google Scholar 

  • Herman PL, Ramberg HA, Baack RD, Markwell J, Osterman JC (2002) Formate dehydrogenase in Arabidopsis thaliana: overexpression and subcellular localization in leaves. Plant Sci 163:1137–1145

    Article  CAS  Google Scholar 

  • Hooks MA, Allwood JW, Harrison JK, Kopka J, Erban A, Goodacre R, Balk J (2014) Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis. Biochem J 463:309–317

    Article  CAS  Google Scholar 

  • Huang S, Jacoby RP, Millar AH, Taylor NL (2014) Plant mitochondrial proteomics. In: Jorrin-Novo J, Komatsu S, Weckwerth W, Wienkoop S (eds) Plant proteomics. Methods in molecular biology (methods and protocols), vol 1072. Humana Press, Totowa, NJ

    Google Scholar 

  • Jiménez A, Romojaro F, Gómez JM, Llanos MR, Sevilla F (2003) Antioxidant systems and their relationship with the response of pepper fruits to storage at 20 °C. J Agric Food Chem 51:6293–6299

    Article  PubMed  Google Scholar 

  • Joao HC, Williams RJ (1993) The anatomy of a kinase and the control of phosphate transfer. Eur J Biochem 216:1–18

    Article  CAS  PubMed  Google Scholar 

  • Johnson TL, Olsen LJ (2003) Import of the peroxisomal targeting signal type 2 protein 3-ketoacyl-coenzyme A thiolase into glyoxysomes. Plant Physiol 133:1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Hu Y (2011) Defining the plant peroxisomal proteome: from Arabidopsis to rice. Front Plant Sci 2:103

    Article  CAS  PubMed  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  CAS  PubMed  Google Scholar 

  • Kleiter AE, Gerhardt B (1998) Glyoxysomal β-oxidation of long-chain fatty acids: completeness of degradation. Planta 206:125–130

    Article  CAS  Google Scholar 

  • Kruft V, Eubel H, Jänsch L, Werhahn W, Braun H-P (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127:1694–1710

    Article  CAS  PubMed  Google Scholar 

  • Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR (2005) Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xu Y, Chong K (2012) The novel functions of kinesin motor proteins in plants. Protoplasma 249(Suppl 2):S95–S100

    Article  Google Scholar 

  • Li L, Ban Z, Limwachiranon J, Luo Z (2017) Proteomic studies on fruit ripening and senescence. Crit Rev Plant Sci 36:116–127

    Article  Google Scholar 

  • Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25:487–498

    Article  CAS  Google Scholar 

  • López-Huertas E, del Río LA (2014) Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits. J Plant Physiol 171:1463–1471

    Article  Google Scholar 

  • Marondedze C, Gehring C, Thomas L (2014) Dynamic changes in the date palm fruit proteome during development and ripening. Hort Res 1:14039

    Article  Google Scholar 

  • Martí MC, Camejo D, Olmos E, Sandalio LM, Fernández-García N, Jiménez A, Sevilla F (2009) Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits. Plant Biol 11:613–624

    Article  PubMed  Google Scholar 

  • Martí MC, Camejo D, Vallejo F, Romojaro F, Bacarizo S, Palma JM, Sevilla F, Jiménez A (2011) Influence of fruit ripening stage and harvest period on the antioxidant content of sweet pepper cultivars. Plant Foods Hum Nutr 66:416–423

    Article  PubMed  Google Scholar 

  • Mateos RM, León AM, Sandalio LM, Gómez M, del Río LA, Palma JM (2003) Peroxisomes from pepper fruits (Capsicum annuum L): Purification, characterization and antioxidant activity. J Plant Physiol 160:1507–1516

    Article  CAS  Google Scholar 

  • Mateos RM, Bonilla-Valverde D, del Río LA, Palma JM, Corpas FJ (2009) NADP-dehydrogenases from pepper fruits: effect of maturation. Physiol Plant 135:130–139

    Article  CAS  PubMed  Google Scholar 

  • Mateos RM, Jiménez A, Román P, Romojaro F, Bacarizo S, Leterrier M, Gómez M, Sevilla F, del Río LA, Corpas FJ, Palma JM (2013) Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 14:9556–9580

    Article  PubMed  Google Scholar 

  • Mauseth JD (2003) Botany: an introduction to plant biology, 3rd edn. Jones and Bartlett Publishers, Sudbury, Massachusetts

    Google Scholar 

  • Millar AH (2007) The plant mitochondrial proteome. In: Šamaj J, Thelen JJ (eds) Plant proteomics. Springer, Berlin, Heidelberg

    Google Scholar 

  • Millar AH, Sweetlove LJ, Giegé P, Leave CJ (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127:1711–1727

    Article  CAS  PubMed  Google Scholar 

  • Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Møller IM (2005) The plant mitochondrial proteome. Trends Plant Sci 10:36–43

    Article  CAS  Google Scholar 

  • Minarik P, Tomaskova N, Kollarova M, Antalik M (2002) Malate dehydrogenases - structure and function. Gen Physiol Biophys 21:257–265

    CAS  Google Scholar 

  • Missihoun TD, Schmitz J, Klug R, Kirch HH, Bartels D (2011) Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. Planta 233:369–382

    Article  CAS  Google Scholar 

  • Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA (2012) Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 52:735–746

    Article  CAS  Google Scholar 

  • Oeljeklaus S, Fischer K, Gerhardt B (2002) Glyoxysomal acetoacetyl-CoA thiolase and 3-oxoacyl-CoA thiolase from sunflower cotyledons. Planta 214:597–607

    Article  CAS  Google Scholar 

  • Offermann S, Okita TW, Edwards GE (2011) Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol 155:1612–1628

    Article  CAS  PubMed  Google Scholar 

  • Okamura-Ikeda K, Hosaka H, Maita N, Fujiwara K, Yoshizawa AC, Nakagawa A, Taniguchi H (2010) Crystal structure of aminomethyltransferase in complex with dihydrolipoyl-H-protein of the glycine cleavage system: implications for recognition of lipoyl protein substrate, disease-related mutations, and reaction mechanism. J Biol Chem 285:18684–18692

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, López-Huertas E, Corpas FJ, Sandalio LM, Gómez M, del Río LA (1998) Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol Plant 104:720–726

    Article  CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2011) Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteomics 74:1230–1243

    Article  CAS  Google Scholar 

  • Palma JM, Gupta DK, Corpas FJ (2013) Metalloenzymes involved in the metabolism of reactive oxygen species and heavy metals stress. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metals stress in plants. Springer, Heidelberg, pp 1–17

    Google Scholar 

  • Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM (2015) Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes. Ann Bot 116:627–636

    Article  CAS  PubMed  Google Scholar 

  • Pascual I, Azcona I, Aguirreolea J, Morales F, Corpas FJ, Palma JM, Rellán-Alvarez R, Sánchez-Díaz M (2010) Growth, yield, and fruit quality of pepper plants amended with two sanitized sewage sludges. J Agric Food Chem 58:6951–6959

    Article  CAS  Google Scholar 

  • Peterson GC, Sommer JM, Klosterman S, Wang CC, Parsons M (1997) Trypanosoma brucei: identification of an internal region of phosphoglycerate kinase required for targeting to glycosomal microbodies. Exp Parasitol 85:16–23

    Article  CAS  Google Scholar 

  • Pistelli L, Gerhardt B, Alpi A (1996) β-oxidation of fatty acids by the unspecialized peroxisomes from rice coleoptile. Plant Sci 118:25–30

    Article  CAS  Google Scholar 

  • Qin G, Wang Q, Liu J, Li B, Tian S (2009) Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics 9:4241–4253

    Article  CAS  Google Scholar 

  • Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J (2013) Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. Plant Physiol 163:1518–1538

    Article  CAS  PubMed  Google Scholar 

  • Reumann S (2002) The photorespiratory pathway of leaf peroxisomes. In: Baker A, Graham IA (eds) Plant peroxisomes: biochemistry, cell biology and biotechnological applications, Ed 1. Kluwer Academic Publishers, Dordreccht, The Netherlands, pp 141–189

    Chapter  Google Scholar 

  • Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135:783–800

    Article  CAS  PubMed  Google Scholar 

  • Reumann S (2011) Towards a definition of the complete proteome of plant peroxisomes: where experimental proteomics must be complemented by bioinformatics. Proteomics 11:1764–1779

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Ruiz M, Álvarez de Morales P, Reumann S, Corpas FJ, Palma JM (2016) Peroxisomes from pepper fruits: new perspectives on the organelle metabolism. In: PerFuMe 2nd International Conference on Peroxisome Formation, Function and Metabolism, Hamburg, Germany. Abstract Book

    Google Scholar 

  • Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM (2017a) Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide. Redox Biol. 12:171–181

    Article  PubMed  Google Scholar 

  • Rodríguez-Ruiz M, Mioto P, Palma JM, Corpas FJ (2017b) S-nitrosoglutathione reductase (GSNOR) activity is down-regulated during pepper (Capsicum annuum L.) fruit ripening. Nitric Oxide 68:51–55

    Article  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pastori GM, Corpas FJ, Sandalio LM, del Río LA, Palma JM (2007) Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon cotyledons. J Exp Bot 58:2417–2427

    Article  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Pazmiño DM, Sparkes I, Rochetti A, Hawes C, Romero-Puertas MC, Sandalio LM (2014) 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics. J Exp Bot 65:4783–4793

    Article  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Sanz-Fernández M, Hu J, Sandalio LM (2016) Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol 171:1665–1674

    Article  PubMed  Google Scholar 

  • Rosado D, Gramegna G, Cruz A, Lira BS, Freschi L, de Setta N, Rossi M (2016) Phytochrome interacting factors (PIFs) in Solanum lycopersicum: diversity, evolutionary history and expression profiling during different developmental processes. PLoS ONE 11:e0165929

    Article  PubMed  Google Scholar 

  • Schuch W, Bird CR, Ray J, Smith CJ, Watson CF, Morris PC, Gray JE, Arnold C, Seymour GB, Tucker GA, Grierson D (1989) Control and manipulation of gene expression during tomato fruit ripening. Plant Mol Biol 13:303–311

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Takahashi S, Kondo T, Dohra H, Ito Y, Kiriiwa Y, Hayashi M, Kamiya S, Kato M, Fujiwara M, Fukao Y, Kobayashi M, Nagata N, Motohashi R (2015) Plastid proteomic analysis in tomato fruit development. PLoS ONE 10:e0137266

    Article  PubMed  Google Scholar 

  • Szymanski J, Levin Y, Savidor A, Breitel D, Chappell-Maor L, Heinig U, Topfer N, Aharoni A (2017) Label-free deep shotgun proteomics reveals protein dynamics during tomato fruit tissues development. Plant J 90:396–417

    Article  CAS  PubMed  Google Scholar 

  • Tamburino R, Vitale M, Ruggiero A, Sassi M, Sannino L, Arena S, Costa A, Batelli G, Zambrano N, Scaloni A, Grillo S, Scotti N (2017) Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol 17:40

    Article  PubMed  Google Scholar 

  • Thazar-Poulot N, Miquel M, Fobis-Loisy I, Gaude T (2015) Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc Natl Acad Sci USA 112:4158–4163

    Article  CAS  Google Scholar 

  • Wang YQ, Yang Y, Fei Z, Yuan H, Fish T, Thannhauser TW, Mazourek M, Kochian LV, Wang X, Li L (2013) Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. J Exp Bot 64:949–961

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S (2016) Proteomic insight into the response of Arabidopsis chloroplasts to darkness. PLoS ONE 11:e0154235

    Article  PubMed  Google Scholar 

  • Wang L, Sun XL, Weiszmann J, Weckwerth W (2017) System-level and granger network analysis of integrated proteomic and metabolomic dynamics identifies key points of grape berry development at the interface of primary and secondary metabolism. Front Plant Sci 8:1066

    Article  PubMed  Google Scholar 

  • Wu XQ, Jiang L, Yu M, An X, Ma R, Yu Z (2016) Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence. J Proteomics 147:197–211

    Article  CAS  PubMed  Google Scholar 

  • Yurimoto H, Lee B, Yasuda F, Sakai Y, Kato N (2004) Alcohol dehydrogenases that catalyse methyl formate synthesis participate in formaldehyde detoxification in the methylotrophic yeast Candida boidinii. Yeast 21:341–350

    Article  CAS  PubMed  Google Scholar 

  • Zhu XD, Zhang CB, Wu WM, Li XP, Zhang CA, Fang JG (2017) Enzyme activities and gene expression of starch metabolism provide insights into grape berry development. Hort Res 4:17018

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ERDF-cofinanced grants AGL2011-26044 and AGL2015-65104-P from the Ministry of Economy and Competitiveness, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Palma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palma, J.M., de Morales, P.Á., del Río, L.A., Corpas, F.J. (2018). The Proteome of Fruit Peroxisomes: Sweet Pepper (Capsicum annuum L.) as a Model. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_14

Download citation

Publish with us

Policies and ethics