Skip to main content

Abstract

EPR spectroscopy and imaging remain still a branch of physical sciences, while its application to biology and medicine is wide and valuable. The EPR-measureable species create in biological systems important and well-defined pool, unique on the background of metabolomes and metallomes. At the same time, they seem to be these constituents of the system, which make it deserving to be called “alive”. I propose to coin the phrase “the paramagnetome” to name this pool and to replace the common, descriptive name of “biologically and medically-oriented EPR/ESR spectroscopy” with “paramagnetomics”, per analogiam to other “-omes” and “-omics”. A short characteristic of these two newly defined terms is proposed, which makes the paramagnetomics closely related to other branches of the systems biology. Relations to the problems of genomics and the central problems of molecular genetics, genetic information, as well as biological evolution are also discussed. The position of EPR spectroscopy and a special role that it plays in defining and understanding the phenomenon of life seem to accomplish the long expected establishing the paramagnetomics and research on paramagnetomes as a branch of biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kon H. Recommendations for EPR/ESR nomenclature and conventions for presenting experimental data in publications. Pure Appl Chem. 1989;61:2195–200.

    Article  Google Scholar 

  2. Prosser V. Postavení a úloha biofyziky v ostatních přírodních védách. [The position and role of biophysics in other natural sciences.]. In: Prosser V, collective, editors. Eksperimentální metody biofyziky [Experimental methods of biophysics]. Praha: Academia; 1989. p. 21–31. [In Czech].

    Google Scholar 

  3. Weiner J. Życie i ewolucja biosfery. Podręcznik ekologii ogólnej [Life and evolution of biosphere. A handbook on general ecology]. Warszawa: PWN; 1999. p. 53. [in Polish]

    Google Scholar 

  4. Bernal JD. The origin of life. Cleveland, Ohio: The World Publishing Company; 1967. Preface, p. xv

    Google Scholar 

  5. Mendel J/G, Wilczyński J, Tschermak E. Prace naukowe Jana/Grzegorza Mendla [The scientific works of John/Gregor Mendel], Spółdzielnia Wydawnicza Książka, Warszawa 1948. [in Polish, Translation of the 6 Edition and Forward by J. Wilczyński, Commentaries by E. Tschermak].

    Google Scholar 

  6. Beadle GW, Tatum EL. Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci U S A. 1941;27:499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Higgs PG, Attwood TK. Bioinformatyka i ewolucja molekularna [Bioinformatics and molecular evolution], Polish Scientific Editors PWN, Warszawa 2012. [in Polish, transl. by Murzyn K, Liguziński P and Kurdziel M, Murzyn K transl. editor, of 1 ed. Blackwell Sci Ltd, a Blackwell Publishing Company, 2005].

    Google Scholar 

  8. Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res Camb. 1966;8:295–309.

    Article  CAS  PubMed  Google Scholar 

  9. Mecklenburg L, Nakamura M, Sundberg JP, Paus R. The nude mouse skin phenotype: The role of Foxn1 in hair follicle development and cycling. Exp Mol Pathol. 2001;71:171–8.

    Article  CAS  PubMed  Google Scholar 

  10. Pantelouris EM. Absence of thymus in a mouse mutant. Nature. 1968;217:370–1.

    Article  CAS  PubMed  Google Scholar 

  11. Jacob F, Perrin D, Sánchez C, Monod J. “L’opéron: groupe de gènes à expression coordonnée par un opérateur” [Operon: a group of genes with the expression coordinated by an operator]. C R Hebd Seances Acad Sci. 1960;250:1727–9. [in French]

    Google Scholar 

  12. Searls DB. The language of genes. Nature. 2002;420:211–7.

    Article  CAS  PubMed  Google Scholar 

  13. Tarski A. Pojęcie prawdy w językach nauk dedukcyjnych [The notion of truth in languages of deductive/formal sciences]. Warszawa: Towarzystwo Naukowe Warszawskie; 1933. [in Polish]

    Google Scholar 

  14. Ji S. The Bhopalator–a molecular model of the living cell based on the concepts of conformons and dissipative structures. J Theor Biol. 1985;116:399–426.

    Article  CAS  PubMed  Google Scholar 

  15. Kuska B. Beer, Bethesda, and Biology: How “Genomics” Came Into Being. J Natl Cancer Inst. 1998;90:93.

    Google Scholar 

  16. Piétu G, Mariage-Samson R, Fayein NA, Matingou C, Eveno E, Houlgatte R, Decraene C, Vandenbrouck Y, Tahi F, Devignes MD, Wirkner U, Ansorge W, Cox D, Nagase T, Nomura N, Auffray C. The Genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics. Genome Res. 1999;9:195–209.

    Article  PubMed  PubMed Central  Google Scholar 

  17. James P. Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys. 1997;30:279–331.

    Article  CAS  PubMed  Google Scholar 

  18. Winkler HL. Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche [Occurrence and cause of parthenogenesis in plants and animals]. Jena: Verlag Fischer; 1920. [in German]

    Google Scholar 

  19. Olivier SG. From DNA sequence to biological function. Nature. 1998;379:597–600.

    Article  Google Scholar 

  20. Hicks GG, Shi EG, Li XM, Li CH, Pawlak M, Ruley HE. Functional genomics in mice by tagged sequence mutagenesis. Nat Genet. 1997;16:338–44.

    Article  CAS  PubMed  Google Scholar 

  21. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW. Characterization of the yeast transcriptome. Cell. 1997;88:243–51.

    Article  CAS  PubMed  Google Scholar 

  22. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL. Humphery-Smith I. Progress with gene-product mapping of Mycoplasma genitalium. Electrophoresis. 1995;16:1090–4.

    Article  CAS  PubMed  Google Scholar 

  23. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA. Microbial ecology and evolution: A ribosomal RNA approach. Annu Rev Microbiol. 1986;40:337–65.

    Article  CAS  PubMed  Google Scholar 

  24. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5:R245–9.

    Article  CAS  PubMed  Google Scholar 

  25. Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol. 2005;1:106–12.

    Article  CAS  PubMed  Google Scholar 

  26. Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003;44:1071–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hirabayashi J, Kasai K. Glycomics, coming of age! Trends Glycosci Glycotechnol. 2000;12:1–5.

    Article  Google Scholar 

  28. Feizi T. Progress in deciphering the information content of the ‘glycome’–a crescendo in the closing years of the millennium. Glycoconj J. 2000;17:553–65.

    Google Scholar 

  29. Williams RJP. Chemical selection of elements by cells. Coord Chem Rev. 2001;216–217:583–95.

    Article  Google Scholar 

  30. Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst. 2005;130:442–65.

    Article  CAS  PubMed  Google Scholar 

  31. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18:1157–61.

    Article  CAS  PubMed  Google Scholar 

  32. Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16:373–8.

    Article  CAS  PubMed  Google Scholar 

  33. Cesareni G, Ceol A, Gavrila C, Palazzi LM, Persico M, Schneider MV. Comparative interactomics. FEBS Lett. 2005;579:1828–33.

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez C, Lachaize C, Janody F, Bellon B, Röder L, Euzenat J, Rechenmann F, Jacq B. Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res. 1999;27:89–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Devlin DKJ. Goodbye, Descartes: the end of logic and the search for a new cosmology of the mind. Chichester: John Wiley & Sons, Inc; 1997.

    Google Scholar 

  36. Williams RJP. Signalling: basics and evolution. Acta Biochim Pol. 2004;51:281–98.

    CAS  PubMed  Google Scholar 

  37. Jura J, Węgrzyn P, Jura J, Koj A. Regulatory mechanisms of gene expression: complexity with elements of deterministic chaos. Acta Biochim Pol. 2006;53:1–9.

    CAS  PubMed  Google Scholar 

  38. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.

    Article  Google Scholar 

  39. Mazur M. Jakościowa teoria informacji [Qualitative Information Theory]. Warszawa: Wydawnictwa Naukowo Techniczne; 1970. [in Polish]

    Google Scholar 

  40. Chmielecki A. Między mózgiem i świadomością: próba rozwiązania problemu psychofizycznego [Between the brain and the consciousness: an attempt to solve the psychophysical problem]. Warszawa: Wydawnictwo Instytutu Filozofii i Socjologii PAN; 2001. [in Polish]

    Google Scholar 

  41. Yadav SP. The Wholeness in Suffix -omics, -omes, and the Word Om. J Biomol Tech. 2007;18:277.

    PubMed  PubMed Central  Google Scholar 

  42. Commoner B. In defense of biology. The integrity of biology must be maintained if physics and chemistry are to be properly applied to the problems of life. Science. 1961;133:1745–8.

    Article  CAS  PubMed  Google Scholar 

  43. Asimov I, Najarian HH, Commoner B. Modern Biology. Science. 1961;134:1020–4.

    Article  CAS  PubMed  Google Scholar 

  44. Salikhov KM. Voevodsky Award 2001 to Prof L. A. Blumenfeld. EPR Newsletter. 2001;12(1):3.

    Google Scholar 

  45. Commoner B, Townsend J, Pake GW. Free radicals in biological materials. Nature. 1954;174:689–91.

    Article  CAS  PubMed  Google Scholar 

  46. Blumenfeld LA. Problemy Fizyki Biologicznej [Problems of biological physics]. Warszawa: PWN;1978. [in Polish, transl. by Berens K and Wartoń A from Russian “Проблемы биологической физики”. Издательство “Наука”; Москва 1974. Available also in English: Blumenfeld LA, author, Haken H editor. Problems of biological physics. Springer-Verlag; Berlin-Heidelberg-New York 1981].

    Google Scholar 

  47. Pauli W, Über den Zusammenhang d. Abschlusses der Elektronenbahnen im Atom mit der Komplexstruktur der Spektren [On the connection between the completions of the electron orbitals in atoms with complex structure of their spectra]. Z Phys. 1925;31:765–85. [in German]

    Article  CAS  Google Scholar 

  48. Uhlenbeck GE, Goudsmit S. Spinning electrons and the structure of spectra. Nature. 1926;117:264–5.

    Article  CAS  Google Scholar 

  49. Michaelis L. Oxidation-reduction systems of biological significance. VI. The mechanism of the catalytic effect of iron on the oxidation of cysteine. J Biol Chem. 1929;84:777–87.

    CAS  Google Scholar 

  50. Lancaster JR Jr, Hibbs JB Jr. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci U S A. 1990;87:1223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michaelis L. The formation of semiquinones as intermediary reduction products from pyocyanine and some other dyestuffs. J Biol Chem. 1931;92:211–32.

    CAS  Google Scholar 

  52. Michaelis L. Theory of the reversible two-step oxidation. J Biol Chem. 1932;96:703–15.

    CAS  Google Scholar 

  53. Michaelis L. Semiquinones, the intermediate steps of reversible organic oxidation-reduction. Chem Rev. 1935;16:243–86.

    Article  CAS  Google Scholar 

  54. Huber M. Introduction to magnetic resonance methods in photosynthesis. Photosynth Res. 2009;102:305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tikhonov AN. Induction events and short-term regulation of electron transport in chloroplasts: an overview. Photosynth Res. 2015;125:65–94.

    Article  CAS  PubMed  Google Scholar 

  56. Świerczek M, Cieluch E, Sarewicz M, Borek A, Moser CC, Dutton PL, Osyczka A. An electronic bus bar lies in the core of cytochrome bc1. Science. 2010;329:451–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sarewicz M, Dutka M, Pintscher S, Osyczka A. Triplet state of the semiquinone-rieske cluster as an intermediate of electronic bifurcation catalyzed by cytochrome bc1. Biochemistry. 2013;52:6388–95.

    Article  CAS  PubMed  Google Scholar 

  58. Kuleta P, Sarewicz M, Postila P, Róg T, Osyczka A. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1. Biochim Biophys Acta. 2016;1857:1661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pintscher S, Kuleta P, Cieluch E, Sarewicz M, Osyczka A. Tuning of hemes b equilibrium redox potential is not required for cross-membrane electron transfer. J Biol Chem. 2016;291:6872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sarewicz M, Bujnowicz Ł, Bhaduri S, Singh SK, Cramer WA, Osyczka A. Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f. Proc Natl Acad Sci U S A. 2017;114:1323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Asimov I, Dawson CR. On the reaction inactivation of tyrosinase during the aerobic oxidation of catechol. J Am Chem Soc. 1950;72:820–8.

    Article  CAS  Google Scholar 

  62. Ksenzhek O. Money: virtual energy. Economy through the prism of thermodynamics. Boca Raton, Florida: Universal-Publishers; 2007.

    Google Scholar 

  63. Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology. 2018;159:1992–2007.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pulatova MK. Localization of paramagnetic centre in gamma irradiated protein. Biophysics (USSR). 1963;8:700–3.

    Google Scholar 

  65. Pulatova MK. On the problem of the localization of the paramagnetic center of proteins irradiated with gamma rays. Biofizika. 1963;8:632–4. [Article in Russian]

    CAS  PubMed  Google Scholar 

  66. Atkins PW, Symons MCR. The structure of inorganic radicals. An application of electron spin resonance to the study of molecular structure. Amsterdam-London-New York: Elsevier Publishing Company; 1967. [Russian transl. by Germanv ED, Dyatkina ME editor. “Спектры ЭПР н строение неорганичецких радикалов”. Издателство “Мир“; Москва 1970, p. 56–65].

    Google Scholar 

  67. Berliner JL, Fujii H. Magnetic resonance imaging of biological specimens by electron paramagnetic resonance of nitroxide spin labels. Science. 1985;227:517–9.

    Article  CAS  PubMed  Google Scholar 

  68. Plonka PM. Electron paramagnetic resonance as a unique tool for skin and hair research. Exp Dermatol. 2009;18:472–84.

    Article  CAS  PubMed  Google Scholar 

  69. Schaumlöffel D. The position of metallomics within other omics fields. In: Michalke B, editor. Metallomics: analytical techniques and speciation methods. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 3–16.

    Google Scholar 

  70. Haraguchi H. Metallomics: the history in the last decade and a future outlook. Metallomics. 2017;9(8):1001–13. https://doi.org/10.1039/C7MT00023E.

    Article  PubMed  Google Scholar 

  71. Rachmilewitz EA, Peisach J, Blumberg WE. Studies on the stability of oxyhemoglobin A and its constituent chains and derivatives. J Biol Chem. 1971;246:3356–66.

    CAS  PubMed  Google Scholar 

  72. Miki T, Kai A, Ikeya M. Electron spin resonance of bloodstains and its application to the estimation of time after bleeding. Forensic Sci Int. 1987;35:149–58.

    Article  CAS  PubMed  Google Scholar 

  73. Svistunenko DA, Davies N, Brealey D, Singer M, Cooper CE. Mitochondrial dysfunction in patients with severe sepsis: An EPR interrogation of individual respiratory chain components. Biochim Biophys Acta. 2006;1757:262–72.

    Article  CAS  PubMed  Google Scholar 

  74. Elas M, Bielanska J, Pustelny K, Plonka PM, Drelicharz L, Skorka T, Tyrankiewicz U, Wozniak M, Heinze-Paluchowska S, Walski M, Wojnar L, Fortin D, Ventura-Clapier R, Chlopicki S. Detection of mitochondrial dysfunction by EPR technique in mouse model of dilated cardiomyopathy. Free Radic Biol Med. 2008;45:321–8.

    Article  CAS  PubMed  Google Scholar 

  75. Reed GH. Electron-paramagnetic-resonance studies of Mn(II) complexes with enzymes and substrates. Biochem Soc Trans. 1985;13:567–71.

    Article  CAS  PubMed  Google Scholar 

  76. Wever R, Oudega B, Van Gelder BF. Generation of superoxide radicals during the autoxidation of mammalian oxyhemoglobin. Biochim Biophys Acta. 1973;302:475–8.

    Article  CAS  Google Scholar 

  77. Tsuruga M, Matsuoka A, Hachimori A, Sugawara Y, Shikama K. The molecular mechanism of autoxidation for human oxyhemoglobin. Tilting of the distal histidine causes nonequivalent oxidation in the β chain. J Biol Chem. 1998;273:8607–15.

    Article  CAS  PubMed  Google Scholar 

  78. Lendzian F. Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy. Biochim Biophys Acta. 2005;1707:67–90.

    Article  CAS  PubMed  Google Scholar 

  79. Kohno M. Applications of electron spin resonance spectrometry for reactive oxygen species and reactive nitrogen species research. J Clin Biochem Nutr. 2010;47:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pucciariello C, Pierdomenico P. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant Cell Environ. 2017;40:473–82.

    Article  CAS  PubMed  Google Scholar 

  81. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.

    Article  CAS  PubMed  Google Scholar 

  82. Ortiz de Montellano PR, Wilks A. Heme oxygenase structure and mechanism. Adv Inorg Chem. 2001;51:359–407.

    Article  Google Scholar 

  83. Hlavica P. N-oxidative transformation of free and N-substituted amine functions by cytochrome P450 as means of bioactivation and detoxication. Drug Metab Rev. 2002;34:451–77.

    Article  CAS  PubMed  Google Scholar 

  84. Wilks A, Heinzl G. Heme oxygenation and the widening paradigm of heme degradation. Arch Biochem Biophys. 2014;544:87–95.

    Article  CAS  PubMed  Google Scholar 

  85. Land EJ, Ramsden CA, Riley PA. Quinone chemistry and melanogenesis. Methods Enzymol. 2004;378:88–109.

    Article  CAS  PubMed  Google Scholar 

  86. Pey AL, Martinez A, Charubala R, Maitland DJ, Teigen K, Calvo A, Pfleiderer W, Wood JM, Schallreuter KU. Specific interaction of the diastereomers 7(R)- and 7(S)-tetrahydrobiopterin with phenylalanine hydroxylase: implications for understanding primapterinuria and vitiligo. FASEB J. 2006;20:E1451–64.

    Article  CAS  Google Scholar 

  87. Daniel J, Kosman DJ. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem. 2010;15:15–28.

    Article  CAS  Google Scholar 

  88. Fenton HJH. Oxidation of tartaric acid in presence of iron. J Chem Soc Trans. 1894;65:899–910.

    Article  CAS  Google Scholar 

  89. Wang W, Zafiriou OC, Chan IY, Zepp RG, Blough NV. Production of hydrated electrons from photoionization of dissolved organic matter in natural waters. Environ Sci Technol. 2007;41:1601–7.

    Article  CAS  PubMed  Google Scholar 

  90. Nikitaki Z, Mavragani IV, Laskaratou DA, Gika V, Moskvin VP, Theofilatos K, Vougas K, Stewart RD, Georgakilas AG. Systemic mechanisms and effects of ionizing radiation: A new ‘old’ paradigm of how the bystanders and distant can become the players. Semin Cancer Biol. 2016;37-38:77–95.

    Google Scholar 

  91. Hawkins CL, Davies MJ. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim Biophys Acta. 2014;1840:708–21.

    Article  CAS  PubMed  Google Scholar 

  92. Davies MJ, Hawkins CL. EPR spin trapping of protein radicals. Free Radic Biol Med. 2004;36:1072–86.

    Article  CAS  PubMed  Google Scholar 

  93. Chikira M, Ng CH, M P. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy. Int J Mol Sci. 2015;16:22754–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Haber F, Weiss J. Über die Katalyse des Hydroperoxydes. (On the catalyse of hydrogen peroxide). Naturwissenschaften. 1932;20:948–50. [in German].

    Article  CAS  Google Scholar 

  95. Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg Chem. 1985;24:3502–4.

    Article  CAS  Google Scholar 

  96. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87:1620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Curie P. Lippmann M. Propriétés magnétiques des corps à diverses températures (note de P. Curie, prèsentée par M. Lippmann). [Magnetic properties of bodies in various temperatures]. Comptes Rendus Hebdomadaires de Séances de l’Académie des Sciences 116. Paris: Gauthier-Villars et Fils, Imprimeurs-Libraires des C. R., 1893: 136–139. [in French]

    Google Scholar 

  98. Langevin M P. La théorie cinétique du magnétisme et les magnétons [The kinetic theory of magnetism and the magnets]. Rapport présenté à la Conférence Solvay, Bruxelles, 30 oct.-3 nov. 1911, In: Langevin P. La physique depuis vingt ans. Paris: Douin, 1923: 171–188. [in French]

    Google Scholar 

  99. Gordy W, Ard WB, Shields H. Microwave spectroscopy of biological substances. I. Paramagnetic substances in X-irradiated amino acids and proteins. Proc Natl Acad Sci U S A. 1955;41:983–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Landar A, Giles N, Zmijewski J, Watanabe N, Oh J-Y, Darley-Usmar V. Modification of lipids by reactive oxygen and nitrogen species: the oxy-nitroxy-lipidome and its role in redox cell signaling. Future Lipidol. 2006;1(2):203–11.

    Article  CAS  Google Scholar 

  101. Buettner GR, Wagner BA, Rodgers VGJ. Quantitative redox biology: An approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem Biophys. 2013;67:477–83.

    Article  CAS  PubMed  Google Scholar 

  102. Lohan SB, Müller R, Albrecht S, Mink K, Tscherch K, Ismaeel F, Lademann J, Rohn S, Meinke MC. Free radicals induced by sunlight in different spectral regions—in vivo versus ex vivo study. Exp Dermatol. 2016;25:380–5.

    Article  CAS  PubMed  Google Scholar 

  103. Lennard-Jones JE. The electronic structure of some diatomic molecules. Trans Faraday Soc. 1929;25:668–86.

    Article  CAS  Google Scholar 

  104. Uehara H, Arimitsu S. Gas-phase electron paramagnetic resonance detection of nitric oxide and nitrogen dioxide in polluted air. Anal Chem. 1973;45:1897–9.

    Article  CAS  PubMed  Google Scholar 

  105. Vanin AF, Mordvintsev PI, Kleshchov AL. Nitrogen oxide appearance in animal tissues in vivo. Studia Biophys. 1984;192:135–43.

    Google Scholar 

  106. Castle JG Jr, Beringer R. Microwave magnetic resonance absorption in nitrogen dioxide. Physiol Res. 1950;80:114–5.

    Article  CAS  Google Scholar 

  107. Lowe DJ. ENDOR and EPR of metalloproteins. Prog Biophys Mol Biol. 1992;5:1–22.

    Article  Google Scholar 

  108. Antholine W, Mailer C, Reichlin B, Swartz HM. Experimental considerations in biological ESR studies. 1. Identity and origin of the ‘tissue lipid signal’: A copper-dithiocarbamate complex. Phys Med Biol. 1976;21:840–6.

    Article  CAS  PubMed  Google Scholar 

  109. Kakuda T, Tanaka H, Kimoto E, Morishige F. Electron paramagnetic resonance spectrum of human serum copper. Appl Spectrosc. 1980;34:276–80.

    Article  CAS  Google Scholar 

  110. Stegmann HB, Schuler P, Ruff H-J. Investigation of damage to forest by EPR spectroscopy in vivo. Photochem Photobiol. 1989;50:209–11.

    Article  CAS  Google Scholar 

  111. Rakoczy L, Płonka PM. Akumulacja manganu w plazmodiach śluzowca (Myxomycetes) Metatrichia vesparum. [Accumulation of manganese in the plasmodia of a true slime mould (Myxomycetes) Metatrichia vesparium]. Ochrona Środowiska i Zasobów Naturalnych, Instytut Ochrony Środowiska. Warszawa. 1999;18:299–308. [In Polish]

    Google Scholar 

  112. Ramos S, Moura JJG, Aureliano M. Recent advances into vanadyl, vanadate and decavanadate interactions with actins. Metallomics. 2012;4:16–22.

    Article  CAS  PubMed  Google Scholar 

  113. Gutierrez P, Sarna T, Swartz HM. Experimental considerations in biological ESR studies. 11. Chromium-tissue complexes detected by electron spin resonance. Phys Med Biol. 1976;21:949–54.

    Article  CAS  PubMed  Google Scholar 

  114. Liu KJ, Mader K, Shi X, Swartz HM. Reduction of carcinogenic chromium(VI) on the skin of living rats. Magn Reson Med. 1997;38:524–6.

    Article  CAS  PubMed  Google Scholar 

  115. Blois MS, Zahlan AB, Maling JE. Electron spin resonance studies on melanin. Biophys J. 1964;4:471–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006;19:572–94.

    Article  CAS  PubMed  Google Scholar 

  117. Fattibene P, Callens F. EPR dosimetry with tooth enamel: A review. Appl Radiat Isot. 2010;68:2033–116.

    Article  CAS  PubMed  Google Scholar 

  118. Hauska G, Schoedl T, Remigy H, Tsiots G. The reaction center of green sulfur bacteria. Biochim Biophys Acta. 2001;1507:260–77.

    Article  CAS  PubMed  Google Scholar 

  119. Barry BA. Reaction dynamics and proton coupled electron transfer: Studies of tyrosine-based charge transfer in natural and biomimetic systems. Biochim Biophys Acta. 2015;1847:46–54.

    Article  CAS  PubMed  Google Scholar 

  120. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84:1155–228.

    Article  CAS  PubMed  Google Scholar 

  121. Glass K, Ito S, Wilby PR, Sota T, Nakamura A, Bowers CR, Vinther J, Dutta S, Summons R, Briggs DEG, Wakamatsu K, Simon JD. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc Natl Acad Sci U S A. 2012;109:10218–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brozyna AA, Jozwicki W, Roszkowski K, Filipiak J, Slominski AT. Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget. 2016;7:17844–53.

    PubMed  PubMed Central  Google Scholar 

  123. Wood JM, Jimbow K, Boissy RE, Slominski A, Plonka PM, Slawinski J, Wortsman J, Tosk J. What’s the use of generating melanin? Exp Dermatol. 1999;8:153–64.

    Article  CAS  PubMed  Google Scholar 

  124. Riley PA. Materia melanica: further dark thoughts. Pigment Cell Res. 1992;5:101–6.

    Article  CAS  PubMed  Google Scholar 

  125. Slominski A, Wortsman J, Plonka PM, Schallreuter KU, Paus R, Tobin DJ. Hair follicle pigmentation. J Invest Dermatol. 2005;124:13–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Singh SK, Kurfurst R, Nizard C, Schnebert S, Perrier E, Tobin DJ. Melanin transfer in human skin cells is mediated by filopodia–a model for homotypic and heterotypic lysosome-related organelle transfer. FASEB J. 2010;24:3756–69.

    Article  CAS  PubMed  Google Scholar 

  127. Tobin DJ, Slominski A, Botchkarev V, Paus R. The fate of hair follicle melanocytes during the hair growth cycle. J Investig Dermatol Symp Proc. 1999;4:323–32.

    Article  CAS  PubMed  Google Scholar 

  128. Lembo S, Di Caprio R, Micillo R, Balato A, Monfrecola G, Panzella L, Napolitano A. Light-independent pro-inflammatory and pro-oxidant effects of purified human hair melanins on keratinocyte cell cultures. Exp Dermatol. 2017;26:592–4.

    Article  PubMed  Google Scholar 

  129. Płonka PM, Picardo M, Slominski AT. Does melanin matter in the dark? Exp Dermatol. 2017;26:595–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Menter JM, Willis I. Electron transfer and photoprotective properties of melanins in solution. Pigment Cell Res. 1997;10:214–7.

    Article  CAS  PubMed  Google Scholar 

  131. Turick CE, Tisa LS, Caccavo F Jr. Melanin production and use as a soluble electron shuttle for Fe(iii) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol. 2002;68:2436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Plonka PM, Grabacka M. Melanin synthesis in microorganisms–biotechnological and medical aspects. Acta Biochim Pol. 2006;53:429–43.

    CAS  PubMed  Google Scholar 

  133. Perrette Y, Poulenard J, Protiere M, Fanget B, Lombard C, Miege C, Quiers M, Nafferchoux E, Pepin-Donat B. Determining soil sources by organic matter EPR fingerprints in two modern speleothems. Org Geochem. 2015;88:59–68.

    Article  CAS  Google Scholar 

  134. Sarna T, Lukiewicz S. Electron spin resonance on living cells. IV. Pathological changes in amphibian eggs and embryos. Folia Histochem Cytochem. 1972;10:265–78.

    CAS  Google Scholar 

  135. Plonka PM, Wisniewska M, Chlopicki S, Elas M, Rosen GM. X-band and S-band EPR detection of nitric oxide in murine endotoxaemia using spin trapping by ferro-di(N-(dithiocarboxy)sarcosine). Acta Biochim Pol. 2003;50:799–806.

    CAS  PubMed  Google Scholar 

  136. Jakubowska M, Sniegocka M, Podgorska E, Michalczyk-Wetula D, Urbanska K, Susz A, Fiedor L, Pyka J, Plonka PM. Pulmonary metastases of the A549-derived lung adenocarcinoma tumors growing in nude mice. A multiple case study. Acta Biochim Pol. 2013;60:323–30.

    CAS  PubMed  Google Scholar 

  137. Gruen R, Eggins S, Aubert M, Spooner N, Pike A, Mueller W. ESR and U-series analyses of faunal material from Cuddie Springs, NSW, Australia: implications for the timing of the extinction of the Australian megafauna. Quat Sci Rev. 2010;29:596–610.

    Article  Google Scholar 

  138. Vahidi N, Clarkson RB, Liu KJ, Norby SW, Wu M, Swartz HM. In-vivo and in-vitro EPR oximetry with fusinite - a new coal-derived, particulate EPR probe. Magn Reson Med. 1994;31:139–46.

    Article  CAS  PubMed  Google Scholar 

  139. Ligeza A, Tikhonov AN, Subczynski WK. In situ measurements of oxygen production and consumption using paramagnetic fusinite particles injected into a bean leaf. Biochim Biophys Acta. 1997;1319:133–7.

    Article  CAS  Google Scholar 

  140. Płonka PM, Elas M. Application of the electron paramagnetic resonance spectroscopy to modern biotechnology. Curr Top Biophys. 2002;26(1):175–89.

    Google Scholar 

  141. Hagen WR. Metallomic EPR spectroscopy. Metallomics. 2009;1:384–91.

    Article  CAS  PubMed  Google Scholar 

  142. Eaton SS, Eaton GR. The world as viewed by and with unpaired electrons. J Magn Reson. 2012;223:151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Namazi MR. Cytochrome-P450 enzymes and autoimmunity: expansion of the relationship and introduction of free radicals as the link. J Autoimmune Dis. 2009;6:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ignarro LJ. Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol. 1990;67:1–7.

    Article  CAS  PubMed  Google Scholar 

  145. Ignarro LJ. Regulation of cytosolic guanylyl cyclase by porphyrins and metalloporphyrins. Adv Pharmacol. 1994;26:35–65.

    Article  CAS  PubMed  Google Scholar 

  146. Denninger JW, Marletta MA. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta. 1999;1411:334–50.

    Article  CAS  PubMed  Google Scholar 

  147. Gunn A, Derbyshire ER, Marletta MA, Britt RD. Conformationally distinct five-coordinate heme-NO complexes of soluble guanylate cyclase elucidated by multifrequency electron paramagnetic resonance (EPR). Biochemistry. 2012;51:8384–90.

    Article  CAS  PubMed  Google Scholar 

  148. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. van Gastel M, Bubacco L, Groenen EJ, Vijgenboom E, Canters GW. EPR study of the dinuclear active copper site of tyrosinase from Streptomyces antibioticus. FEBS Lett. 2000;474:228–32.

    Article  PubMed  Google Scholar 

  150. Segal HL, Boyer PD. The role of sulfhydryl groups in the activity of D-glyceraldehyde 3-phosphate dehydrogenase. J Biol Chem. 1953;204:265–81.

    CAS  PubMed  Google Scholar 

  151. Dalziel K, McFerran NV, Wonacott AJ. Glyceraldehyde-3-phosphate dehydrogenase. Philos Trans R Soc Lond Ser B Biol Sci. 1981;293:105–18.

    Article  CAS  Google Scholar 

  152. Wu K, Li W, Yu L, Tong W, Feng Y, Ling S, Zhang L, Zheng X, Yang M, Tian C. Temperature-dependent ESR and computational studies on antiferromagnetic electron transfer in the yeast NADH dehydrogenase Ndi1. Phys Chem Chem Phys. 2017;19:4849–54.

    Article  CAS  PubMed  Google Scholar 

  153. Migita CT, Salerno JC, Masters BS, Martasek P, McMillan K, Ikeda-Saito M. Substrate binding-induced changes in the EPR spectra of the ferrous nitric oxide complexes of neuronal nitric oxide synthase. Biochemistry. 1997;36:10987–92.

    Article  CAS  PubMed  Google Scholar 

  154. Smith JM. Evolution and information. In: Koj A, Sztompka P, editors. Images of the World: Science, Humanities, Art. Kraków: The Jagiellonian University; 2001. p. 13–7.

    Google Scholar 

  155. Muh F, Zouni A. Light-induced water oxidation in photosystem II. Front Biosci (Landmark Ed). 2011;16:3072–132.

    Article  CAS  Google Scholar 

  156. Müh F, Glöckner C, Hellmich J, Zouni A. Light-induced quinone reduction in photosystem II. Biochim Biophys Acta. 2012;1817:44–65.

    Article  PubMed  CAS  Google Scholar 

  157. Marciniak A, Ciesielski B. EPR dosimetry in nails—A review. Appl Spectrosc Rev. 2016;51:73–92.

    Article  Google Scholar 

  158. Hong H, Sun J, Cai W. Multimodality imaging of nitric oxide and nitric oxide synthases. Free Radic Biol Med. 2009;47:684–98.

    Article  CAS  PubMed  Google Scholar 

  159. Spasojević I. Free radicals and antioxidants at a glance using EPR Spectroscopy. Crit Rev Clin Lab Sci. 2011;48:114–42.

    Article  PubMed  CAS  Google Scholar 

  160. Plonka PM, Chlopicki S, Plonka BK, Jawien J, Gryglewski RJ. Endotoxaemia in rats: detection of nitrosyl-haemoglobin in blood and lung by EPR. Curr Top Biophys. 1999;23(1):47–53.

    CAS  Google Scholar 

  161. Szczygiel D, Pawlus J, Plonka PM, Elas M, Szczygiel M, Plonka BK, Łukiewicz SJ. Nitric oxide in the interaction between primary and secondary tumor of L5178Y lymphoma. Nitric Oxide. 2004;11:279–89.

    Article  CAS  PubMed  Google Scholar 

  162. Subczynski WK, Widomska J, Feix JB. Physical properties of lipid bilayers from EPR spin labeling and their influence on chemical reactions in a membrane environment. Free Radic Biol Med. 2009;46:707–18.

    Article  CAS  PubMed  Google Scholar 

  163. Elas M, Magwood JM, Butler B, Li C, Wardak R, DeVries R, Barth ED, Epel B, Rubinstein S, Pelizzari CA, Weichselbaum RR, Halpern HJ. EPR oxygen images predict tumor control by a 50% tumor control radiation dose. Cancer Res. 2013;73:5328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Krzykawska-Serda M, Miller RC, Elas M, Epel B, Barth ED, Maggio M, Halpern HJ. Correlation between hypoxia proteins and EPR-detected hypoxia in tumors. Adv Exp Med Biol. 2017;977:319–25.

    Article  CAS  PubMed  Google Scholar 

  165. Godechal Q, Ghanem GE, Cook MG, Gallez B. Electron paramagnetic resonance spectrometry and imaging in melanomas: comparison between pigmented and nonpigmented human malignant melanomas. Mol Imaging. 2013;12:218–23.

    Article  CAS  PubMed  Google Scholar 

  166. Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. Contrast Media Mol Imaging. 2015;10:266–81.

    Article  CAS  PubMed  Google Scholar 

  167. Metabolism, Metabolomics, Imaging in Cancer. Cherukuri MK, Kalyanaraman B (Chairs). Session 6th, Wednesday, October 5th, 2016. Xth International Workshop on EPR in Biology and Medicine, Kraków, October 02–06, 2016. www.eprworkshop.info [Access: Aug 29th, 2017].

  168. McCall KA, Huang C, Fierke CA. Function and mechanism of zinc metalloenzymes. J Nutr. 2000;130:1437S–46S.

    Article  CAS  PubMed  Google Scholar 

  169. Pasenkiewicz-Gierula M, Murzyn K, Róg T, Czaplewski C. Molecular dynamics simulation studies of lipid bilayer systems. Acta Biochim Pol. 2000;47:601–11.

    CAS  PubMed  Google Scholar 

  170. Symons MC. Electron movement through proteins and DNA. Free Radic Biol Med. 1997;22:1271–6.

    Article  CAS  PubMed  Google Scholar 

  171. Szent-Györgyi A. Wstęp do biologii submolekularnej. Warszawa: PWN; 1961. [Polish, transl. by Stolarek J from English “Introduction to a submolecular biology”. New York: Academic Press; 1960].

    Google Scholar 

  172. VI International Conference of Biophysics Students. Biophysics Students’ Association ‘Nobel’ and Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland, 19th-21st May 2017. Programme Book. http://www.nobel.wbbib.uj.edu.pl/ [Access: Aug 30th, 2017].

  173. Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E. DNA molecule provides a computing machine with both data and fuel. Proc Natl Acad Sci U S A. 2003;100:2191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nickoloff JA. Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutat Res. 2017;806:64–74. https://doi.org/10.1016/j.mrfmmm.2017.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Küppers B-A. Geneza informacji biologicznej. Filozoficzne problem powstania życia. [The genesis of biological information. On philosophical problems of the origin of life]. Warszawa: PWN; 1991. [in Polish, transl. by Ługowski W from German “Der Ursprung biologischer Information. Zur Naturphilosophie der Lebenentstehung”. B. Piper Verlag GmbH & Co. K.G. Munich 1986. Available also in English: Information and the origin of life. The MIT Press, Cambridge/Mass. 1990].

    Google Scholar 

  176. Ohno S. Evolution from primordial oligomeric repeats to modern coding sequences. J Mol Evol. 1987;25:325–9.

    Article  CAS  PubMed  Google Scholar 

  177. Arodź T, Płonka PM. Effects of point mutations on protein structure are nonexponentially distributed. Proteins. 2012;80:1780–90.

    PubMed  Google Scholar 

  178. Arodź T, Płonka PM. Sequence and structure space model of protein divergence driven by point mutations. J Theor Biol. 2013;330:1–8.

    Article  PubMed  CAS  Google Scholar 

  179. Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971;58:465–523.

    Article  CAS  PubMed  Google Scholar 

  180. Muller HJ. Artificial transmutation of the gene. Science. 1927;66:84–7.

    Article  CAS  PubMed  Google Scholar 

  181. Howard BD, Tessman I. Identification of altered bases in mutated single-stranded DNA III. Mutagenesis by ultraviolet light. J Mol Biol. 1964;9:372–5.

    Article  CAS  PubMed  Google Scholar 

  182. Tessman I, Poddart RK, Kumar S. Identification of the altered bases in mutated single-stranded DNA I. In vitro mutagenesis by hydroxylamine, ethyl methanesulfonate and nitrous acid. J Mol Biol. 1964;9:352–63.

    Article  CAS  PubMed  Google Scholar 

  183. Cech TR. RNA chemistry. Ribozyme self-replication? Nature. 1989;339:507–8.

    Article  CAS  PubMed  Google Scholar 

  184. Niziolek M, Korytowski W, Girotti AW. Chain-breaking antioxidant and cytoprotective action of nitric oxide on photodynamically stressed tumor cells. Photochem Photobiol. 2003;78:262–70.

    Article  CAS  PubMed  Google Scholar 

  185. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys. 2004;430:37–48.

    Article  CAS  PubMed  Google Scholar 

  186. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W. Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science. 2004;306:1765–8.

    Article  CAS  PubMed  Google Scholar 

  187. Reichard P, Baldesten A, Rutberg L. Formation of deoxycytidine phosphates from cytidine phosphates in extracts from Escherichia coli. J Biol Chem. 1961;236:1150–7.

    CAS  PubMed  Google Scholar 

  188. Jordan A, Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 1998;67:71–98.

    Article  CAS  PubMed  Google Scholar 

  189. Chang MC, Yee CS, Stubbe J, Nocera DG. Turning on ribonucleotide reductase by light-initiated amino acid radical generation. Proc Natl Acad Sci U S A. 2004;101:6882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nordlund P, Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 2006;75:681–706.

    Article  CAS  PubMed  Google Scholar 

  191. Berggren G, Duraffourg N, Sahlin M, Sjöberg BM. Semiquinone-induced maturation of Bacillus anthracis ribonucleotide reductase by a superoxide intermediate. J Biol Chem. 2014;289:31940–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pulatova MK, Sharygin VL, Todorov IN. The activation of ribonucleotide reductase in animal organs as the cellular response against the treatment with DNA-damaging factors and the influence of radioprotectors on this effect. Biochim Biophys Acta. 1999;1453:321–9.

    Article  CAS  PubMed  Google Scholar 

  193. Poole AM, Jeffares DC, Penny D. The path from the RNA world. J Mol Evol. 1998;46:1–17.

    Article  CAS  PubMed  Google Scholar 

  194. Jeffares DC, Poole AM, Penny D. Relics from the RNA world. J Mol Evol. 1998;46:18–36.

    Article  CAS  PubMed  Google Scholar 

  195. Zhao H, Dobrucki J, Rybak P, Traganos F, Halicka HD, Darzynkiewicz Z. Induction of DNA damage signaling by oxidative stress in relation to DNA replication as detected using “click chemistry”. Cytometry A. 2011;79:897–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Berniak K, Rybak P, Bernas T, Zarębski M, Biela E, Zhao H, Darzynkiewicz Z, Dobrucki JW. Relationship between DNA damage response, initiated by camptothecin or oxidative stress, and DNA replication, analyzed by quantitative 3D image analysis. Cytometry A. 2013;83:913–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Joyce GF, Orgel LE. Prospects for understanding the origin of RNA world. In: Gesteland RF, Atkins JF, editors. The RNA world. New York, NJ: Cold Spring Harbour Laboratory Press; 1993. p. 1–25.

    Google Scholar 

  198. Plume A. “Omics”: ‘genomics’ offspring shed light on biodiversity. Res Trends. 2010;19:6–7.

    Google Scholar 

  199. Malinski T, Taha Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature. 1992;358:676–8.

    Article  CAS  PubMed  Google Scholar 

  200. Soh N, Katayama Y, Maeda M. A fluorescent probe for monitoring nitric oxide production using a novel detection concept. Analyst. 2001;126:564–6.

    Article  CAS  PubMed  Google Scholar 

  201. Mal A, Chatterjee IB. Mechanism of autoxidation of oxyhaemoglobin. J Biosci. 1991;16:55–70.

    Article  CAS  Google Scholar 

  202. Batthyány C, Bartesaghi S, Mastrogiovanni M, Lima A, Demicheli V, Radi R. Tyrosine-nitrated proteins: proteomic and bioanalytical aspects. Antioxid Redox Signal. 2017;26:313–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim Biophys Acta. 2018;1866(1):178–204. https://doi.org/10.1016/j.bbapap.2017.06.021.

    Article  CAS  Google Scholar 

  204. Di Giuseppe S, Placidi G, Sotgiu A. New experimental apparatus for multimodal resonance imaging: initial EPRI and NMRI experimental results. Phys Med Biol. 2001;46:1003–16.

    Article  PubMed  Google Scholar 

  205. Beer S. Cybernetyka a zarządzanie [Cybernetics and management]. Warszawa: PWN; 1966, pp. 67–74. [in Polish, transl. by Ś. Sorokowski of the 1st Edition, The English London: University Press Ltd; 1959].

    Google Scholar 

  206. Pasenkiewicz-Gierula M, Sealy RC. Analysis of the ESR spectrum of synthetic dopa melanin. Biochim Biophys Acta. 1986;884:510–6.

    Article  CAS  PubMed  Google Scholar 

  207. Subczynski WK, Kusumi A. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim Biophys Acta. 2003;1610:231–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to recall the memory of two excellent scientists from Kraków, who actually created the topic and the subject of this chapter: Professor Stanisław J. Łukiewicz (1927–2005) and Professor Aleksander Koj (1935–2016). Professor Łukiewicz established “The Kraków School of Biophysics”, but I particularly appreciate his monographic course entitled “The electron phenomena in living systems and the ways of their investigations” which I attended in 1985/1986 and which actually in detail outlined and designed paramagnetomics. Professor Koj, a famous Polish biochemist, and a Rector of the Jagiellonian University in Kraków, was a supporter of systemic approach in modern biology, fascinated by functional genomics—with the term itself and the genomic approach to biochemistry. He had always encouraged me to head crosswise the standard pathways of thinking in biology and to look for new qualities in the process of “making the science”. I would like to express my particular gratitude to all the students of mine (some of whom being now professors) who have always inspired me to do so and who invited me to their conference in 2017 [172]. In particular, I must acknowledge Dr. Sebastian Pintscher, who in 2010 carried out under my supervision the EPR measurements exhibited in Fig. 9.3 and let me publish the spectra under my name.

The Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University is a partner of the Leading National Research Centre (KNOW) supported by the Polish Ministry of Science and Higher Education. The paper was partially supported from this fund (PMP, grant KNOW 35p/10/2015).

Conflict of Interest I have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław M. Płonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Płonka, P.M. (2019). Paramagnetomics. In: Shukla, A. (eds) Electron Spin Resonance Spectroscopy in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2230-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2230-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2229-7

  • Online ISBN: 978-981-13-2230-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics