Skip to main content

Measurement of Oxidative Stress Using ESR Spectroscopy

  • Chapter
  • First Online:
Electron Spin Resonance Spectroscopy in Medicine

Abstract

Electron spin resonance (ESR) spectrometry could be a dependable and powerful tool for identification and quantification of free radicals in biological and chemical environments. It is used for the assessment of the antioxidant properties of drugs, medication, and food factors. In vitro or in vivo ESR strategies are acceptable for evaluating oxidative stress introduced by means of reactive oxygen species. During this chapter, some necessary issues regarding the detection and measurement of oxidative stress using ESR spectrometry are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He W, Liu Y, Wamer WG, Yin JJ. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal. 2014;22:49–63.

    Article  CAS  Google Scholar 

  2. Lee M-C. Assessment of oxidative stress and antioxidant property using electron spin resonance (ESR) spectroscopy. J Clin Biochem Nutr. 2013;52:1–8.

    Article  CAS  Google Scholar 

  3. Palmieri B, Sblendorio V. Oxidative stress tests: overview on reliability and use. Eur Rev Med Pharmacol Sci. 2007;11:309–42.

    CAS  PubMed  Google Scholar 

  4. Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013;14:21525–50.

    Article  Google Scholar 

  5. Halliwell B. The wanderings of a free radical. Free Radic Biol Med. 2009;46:531–42.

    Article  CAS  Google Scholar 

  6. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–5.

    Article  CAS  Google Scholar 

  7. Paravicini TM, Drummond GR, Sobey C. Reactive oxygen species in the cerebral circulation: physiological roles and therapeutic implications for hypertension and stroke. Drugs. 2004;64:2143–57.

    Article  CAS  Google Scholar 

  8. Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol. 1999;34:879–86.

    Article  CAS  Google Scholar 

  9. Suematsu M, Suzuki H, Delano FA, Schmid-Schönbein G-W. The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation. 2002;9:259–76.

    Article  CAS  Google Scholar 

  10. Cuzzocrea S, Mazzon E, Dugo L, Di Paola R, Caputi AP, Salvemini D. Superoxide: a key player in hypertension. FASEB J. 2004;18:94–101.

    Article  CAS  Google Scholar 

  11. Cooper D, Stokes KY, Tailor A, Granger D-N. Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol. 2002;2:165–80.

    Article  CAS  Google Scholar 

  12. Miyazaki H, Shoji H, Lee M. Measurement of oxidative stress in stroke prone spontaneously hypertensive rat brain using in vivo electron spin resonance spectroscopy. Redox Rep. 2002;7:260–5.

    Article  CAS  Google Scholar 

  13. Lee MC, Shoji H, Miyazaki H, et al. Measurement of oxidative stress in the rodent brain using computerized electron spin resonance tomography. Magn Reson Med Sci. 2003;2:79–84.

    Article  Google Scholar 

  14. Lee MC, Shoji H, Miyazaki H, et al. Assessment of oxidative stress in the spontaneously hypertensive rat brain using electron spin resonance (ESR) imaging and in vivo L-Band ESR. Hypertens Res. 2004;27:485–92.

    Article  CAS  Google Scholar 

  15. Lee C, Okabe E. Hydroxyl radical-mediated reduction of Ca2+-ATPase activity of masseter muscle sarcoplasmic reticulum. Jpn J Pharmacol. 1995;67:21–8.

    Article  CAS  Google Scholar 

  16. Ishibashi T, Lee CI, Okabe E. Skeletal sarcoplasmic reticulum dysfunction induced by reactive oxygen intermediates derived from photoactivated rose bengal. J Pharmacol Exp Ther. 1996;277:350–8.

    CAS  PubMed  Google Scholar 

  17. Lee C, Miura K, Liu X, Zweier J-L. Biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite. J Biol Chem. 2000;275:38965–72.

    Article  CAS  Google Scholar 

  18. Hagiwara T, Lee CI, Okabe E. Differential sensitivity to hydroxyl radicals of pre- and postjunctional neurovascular transmission in the isolated canine mesenteric vein. Neuropharmacology. 2000;39:1662–72.

    Article  CAS  Google Scholar 

  19. Miura Y, Anzai K, Takahashi S, Ozawa T. A novel lipophilic spin probe for the measurement of radiation damage in mouse brain using in vivo electron spin resonance (ESR). FEBS Lett. 1997;419:99–102.

    Article  CAS  Google Scholar 

  20. Sano H, Naruse M, Matsumoto K, Oi T, Utsumi H. A new nitroxyl-probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med. 2000;28:959–69.

    Article  CAS  Google Scholar 

  21. Anzai K, Saito K, Takeshita K, et al. Assessment of ESR-CT imaging by comparison with autoradiography for the distribution of a blood-brain-barrier permeable spin probe, MC-PROXYL, to rodent brain. Magn Reson Imaging. 2003;21:765–72.

    Article  Google Scholar 

  22. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142:231–55.

    Article  CAS  Google Scholar 

  23. Berliner JL, Fujii H. Magnetic resonance imaging of biological specimens by electron paramagnetic resonance of nitroxide spin labels. Science. 1985;227:517–9.

    Article  CAS  Google Scholar 

  24. Ishida S, Kumashiro H, Tsuchihashi N, et al. In vivo analysis of nitroxide radicals injected into small animals by L-band ESR technique. Phys Med Biol. 1989;34:1317–23.

    Article  CAS  Google Scholar 

  25. Utsumi H, Muto E, Masuda S, Hamada A. In vivo ESR measurement of free radicals in whole mice. Biochem Biophys Res Commun. 1990;172:1342–8.

    Article  CAS  Google Scholar 

  26. Takeshita K, Utsumi H, Hamada A. ESR measurement of radical clearance in lung of whole mouse. Biochem Biophys Res Commun. 1991;177:874–80.

    Article  CAS  Google Scholar 

  27. Kuppusamy P, Chzhan M, Vij K, et al. Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation. Proc Natl Acad Sci U S A. 1994;91:3388–92.

    Article  CAS  Google Scholar 

  28. Kuppusamy P, Afeworki M, Shankar RA, et al. In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model. Cancer Res. 1998;58:1562–8.

    CAS  PubMed  Google Scholar 

  29. He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier J. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci U S A. 1999;96:4586–91.

    Article  CAS  Google Scholar 

  30. Ashton T, Rowlands CC, Jones E, Young IS, Jackson SK, Davies B, et al. Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol. 1998;77:498–502.

    Article  CAS  Google Scholar 

  31. Grech ED, Dodd NJF, Jackson MJ, Morrison WL, Faragher EB, Ramsdale D-R. Evidence for free radical generation after primary percutaneous transluminal coronary angioplasty re-canalization in acute myocardial infarction. Am J Cardiol. 1996;77:122–7.

    Article  CAS  Google Scholar 

  32. Tortolani AJ, Powell SR, Misik V, Weglicki WG, Pogo GJ, Kramer J-H. Detection of alkoxyl and carbon centred free radicals in coronary sinus blood from patients undergoing elective cardioplegia. Free Radic Biol Med. 1993;14:421–6.

    Article  CAS  Google Scholar 

  33. Utsumi H, Yasukawa K, Soeda T, Yamada K, Ra S, Yao T, Tsuneyoshi M. Noninvasive mapping of reactive oxygen species by in vivo electron spin resonance spectroscopy in indomethacin-induced gastric ulcers in rats. J Pharmacol Exp Ther. 2006;317:228–35.

    Article  CAS  Google Scholar 

  34. Sano T, Umeda F, Hashimoto T, Nawata H, Utsumi H. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia. 1998;41:1355–60.

    Article  CAS  Google Scholar 

  35. Fujii H, Koscielniak J, Berliner LJ. In vivo ESR observation of bioradical metabolites in living animals. In: Ohya-Nishiguchi H, Packer L, editors. Bioradicals detected by ESR spectroscopy. Basel: Birkhäuser; 1995. p. 155–62.

    Chapter  Google Scholar 

  36. Hickenbottom SL, Grotta J. Neuroprotective therapy. Semin Neurol. 1998;18:485–92.

    Article  CAS  Google Scholar 

  37. Tan DX, Reiter RJ, Manchester LC, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2:181–97.

    Article  CAS  Google Scholar 

  38. Kevin LG, Novalija E, Stowe D-F. Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth Analg. 2005;101:1275–87.

    Article  Google Scholar 

  39. Hans P, Bonhomme V. Why we still use intravenous drugs as the basic regimen for neurosurgical anaesthesia. Curr Opin Anaesthesiol. 2006;19:498–503.

    Article  Google Scholar 

  40. Kobayashi K, Yoshino F, Takahashi SS, et al. Direct assessments of the antioxidant effects of propofol medium chain triglyceride/long chain triglyceride on the brain of stroke-prone spontaneously hypertensive rats using electron spin resonance spectroscopy. Anesthesiology. 2008;109:426–35.

    Article  CAS  Google Scholar 

  41. Yoshino F, Yoshida A, Umigai N, Kubo K, Lee M-C. Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain. J Clin Biochem Nutr. 2011;49:182–7.

    Article  CAS  Google Scholar 

  42. Iannone A, Rota C, Bergamini S, Tomasi A, Canfield L-M. Antioxidant activity of carotenoids: An electron-spin resonance study on β-carotene and lutein interaction with free radicals generated in a chemical system. J Biochem Mol Toxicol. 1998;12:299–304.

    Article  CAS  Google Scholar 

  43. Jeong MS, Yu K-N, Chung HH, Park SJ, Lee AY, Song MR, et al. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials. Sci Rep. 2016;6:26347.

    Article  CAS  Google Scholar 

  44. Ge CC, Li Y, Yin JJ, et al. The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Mater. 2012;4:e32.

    Article  Google Scholar 

  45. Zhang WD, Wang C, Li ZJ, et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater. 2012;24:5391–7.

    Article  CAS  Google Scholar 

  46. Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5:2067–76.

    Article  CAS  Google Scholar 

  47. Zhao B, Yin JJ, Bilski PJ, et al. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol Appl Pharmacol. 2009;241:163–72.

    Article  CAS  Google Scholar 

  48. Yin JJ, Liu J, Ehrenshaft M, et al. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes-Generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol. 2012;263:81–8.

    Article  CAS  Google Scholar 

  49. Leonard SS, Cohen GM, Kenyon AJ, Schwegler-Berry D, Fix NR, Bangsaruntip S, Roberts JR. Generation of reactive oxygen species from silicon nanowires. Environ Health Insights. 2014;8:21–9.

    Google Scholar 

  50. Angelé-Martínez C, Nguyen KVT, Ameer FS, Anker JN, Brumaghim JL. Reactive Oxygen Species Generation by Copper(II) Oxide Nanoparticles Determined by DNA Damage Assays and EPR Spectroscopy. Nanotoxicology. 2017;11:278–88.

    Article  Google Scholar 

  51. Li M, Yin J-J, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal. 2014;22:76–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iravani, S., Soofi, G.J. (2019). Measurement of Oxidative Stress Using ESR Spectroscopy. In: Shukla, A. (eds) Electron Spin Resonance Spectroscopy in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2230-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2230-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2229-7

  • Online ISBN: 978-981-13-2230-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics