Skip to main content

EPR Studies on Understanding the Physical Intricacy of HbNO Complexes

  • Chapter
  • First Online:

Abstract

Hemoglobin is a representative for proteins of quaternary structure and allosteric regulation. In reaction with natural metabolite, nitric oxide forms the paramagnetic complex, nitrosyl hemoglobin (HbNO). Electron paramagnetic resonance is the method of choice to investigate nitrosyl species in biological systems. The interpretation of HbNO EPR spectra belongs to the biggest challenges in biologically oriented EPR spectroscopy. The recorded EPR spectrum is sensitive to geometric and electronic structure of the essential moiety, heme–NO unit. The composite character of the HbNO spectrum is apparent. The contributions from the α and β subunits of the tetramer, as well as the two possible heme coordination states, are recognized. The magnetic signatures of these structural variants are determined from EPR signals. The chapter presents the intuitive explanation of the basic EPR parameters, g- and A-tensors, as the structural fingerprints of HbNO. The overview of the temperature and pH-dependent effects on the spectral shape is given. The application of EPR as a tool for quantitation of different HbNO levels in biological samples is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Angelo M, Hausladen A, Singel DJ, Stamler JS. Interactions of NO with hemoglobin: from microbes to man. Methods Enzymol. 2008;436:131–68.

    Article  CAS  Google Scholar 

  2. Peisach J, Blumberg WE, Wittenberg BA, Wittenberg JB. The electronic structure of protoheme proteins III. Configuration of the heme and its ligands. J Biol Chem. 1968;243:1871–80.

    CAS  PubMed  Google Scholar 

  3. Henry Y, Banerjee R. Electron paramagnetic studies of nitric oxide haemoglobin derivatives: Isolated subunits and nitric oxide hybrids. J Mol Biol. 1973;73:469–82.

    Article  CAS  Google Scholar 

  4. Szabo A, Perutz MF. Equilibrium between six- and five-coordinated hemes in nitrosyl hemoglobin: interpretation of electron spin resonance spectra. Biochemistry. 1976;15:4427–8.

    Article  CAS  Google Scholar 

  5. Taketa F, Antholine WE, Chen JY. Chain nonequivalence in binding of nitric oxide to hemoglobin. J Biol Chem. 1978;253:5448–51.

    CAS  PubMed  Google Scholar 

  6. Hille R, Olson JS, Palmer G. Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin. J Biol Chem. 1979;254:12110–20.

    CAS  PubMed  Google Scholar 

  7. Kosaka H, Sawai Y, Sakaguchi H, Kumura E, Harada N, Watanabe M, Shiga T. ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine-treated rats. Am J Phys. 1994;266:C1400–5.

    Article  CAS  Google Scholar 

  8. Jaszewski AR, Fann YC, Chen Y-R, Sato K, Corbett J, Mason RP. EPR spectroscopy studies on the structural transition of nitrosyl hemoglobin in the arterial-venous cycle of DEANO-treated rats as it relates to the proposed nitrosyl hemoglobin/nitrosothiol hemoglobin exchange. Free Radic Biol Med. 2003;35:444–51.

    Article  CAS  Google Scholar 

  9. Jiang J, Corbett J, Hogg N, Mason RP. An electron paramagnetic resonance investigation of the oxygen dependence of the arterial-venous gradient of nitrosyl hemoglobin in blood circulation. Free Radic Biol Med. 2007;43:1208–15.

    Article  CAS  Google Scholar 

  10. Hogg N. Detection of nitric oxide by electron paramagnetic resonance spectroscopy. Free Radic Biol Med. 2010;49:122–9.

    Article  CAS  Google Scholar 

  11. Hawkins CL, Davies MJ. Detection and characterization of radicals in biological materials using EPR methodology. Biochim Biophys Acta. 1840;2014:708–21.

    Google Scholar 

  12. Piknova B, Gladwin MT, Schechter AN, Hogg N. Electron paramagnetic resonance analysis of nitrosyl hemoglobin in humans during NO inhalation. J Biol Chem. 2005;280:40583–8.

    Article  CAS  Google Scholar 

  13. Dikalov S, Fink B. ESR techniques for the detection of nitric oxide in vivo and in tissues. Methods Enzymol. 2005;396:597–610.

    Article  CAS  Google Scholar 

  14. Goodrich LE, Paulat F, Praneeth VK, Lehnert N. Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems. Inorg Chem. 2010;49:6293–316.

    Article  CAS  Google Scholar 

  15. Lehnert N, Scheidt WR, Wolf MW. Structure and bonding in heme-nitrosyl complexes and implications for biology. Struct Bond. 2014;154:155–224.

    Article  CAS  Google Scholar 

  16. Henry YA, Guissani A. EPR detection of nitrosylated compounds: introduction with some historical background. In: Lukiewicz S, Zweier JL, editors. Nitric Oxide in Transplant Rejection and Anti-Tumor Defense. New York: Springer Science + Business Media; 1998. p. 3–35.

    Chapter  Google Scholar 

  17. McMahon TJ, Bonaventura J. The Main Players: Hemoglobin and Myoglobin; Nitric Oxide and Oxygen. In: Mozzarelli A, Bettati S, editors. Chemistry and biochemistry of oxygen therapeutics: from transfusion to artificial blood. New Jersey: John Wiley & Sons, Ltd; 2011. p. 47–62.

    Chapter  Google Scholar 

  18. Cooper CE. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999;1411:290–309.

    Article  CAS  Google Scholar 

  19. Wyllie GR, Schulz CE, Scheidt WR. Five- to six-coordination in (nitrosyl)iron(II) porphyrinates: effects of binding the sixth ligand. Inorg Chem. 2003;42:5722–34.

    Article  CAS  Google Scholar 

  20. Yi J, Soares AS, Richter-Addo GB. Crystallographic characterization of the nitric oxide derivative of R-state human hemoglobin. Nitric Oxide. 2014;39:46–50.

    Article  CAS  Google Scholar 

  21. Chan NL, Kavanaugh JS, Rogers PH, Arnone A. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin. Biochemistry. 2004;431:118–32.

    Article  Google Scholar 

  22. Liao MS, Huang MJ, Watts JD. Binding of O2 and NO to heme in heme-nitric oxide/oxygen-binding (H-NOX) proteins. A theoretical study. J Phys Chem B. 2013;117:10103–14.

    Article  CAS  Google Scholar 

  23. Radoul M, Sundararajan M, Potapov A, Riplinger C, Neese F, Goldfarb D. Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys. 2010;12:7276–89.

    Article  CAS  Google Scholar 

  24. Sundararajan M, Neese F. Detailed QM/MM study of the electron paramagnetic resonance parameters of nitrosyl myoglobin. J Chem Theory Comput. 2012;8:563–74.

    Article  CAS  Google Scholar 

  25. Eaton SS, Eaton GR, Berliner LJ, editors. Biomedical EPR–part A: free radicals, metals, medicine, and physiology. BiolMagnReson, vol. 23. New York: Kluwer Academic/Plenum Press; 2005.

    Google Scholar 

  26. Eaton SS, Eaton GR, Berliner LJ, editors. Biomedical EPR–part B: methodology, instrumentation, and dynamics. BiolMagnReson, vol. 24. New York: Kluwer Academic/Plenum Press; 2005.

    Google Scholar 

  27. Hagen WR, Biomolecular EPR Spectroscopy. Florida: CRC Press, Taylor & Francis Group; 2009.

    Google Scholar 

  28. Corvaja C. Introduction to Electron Paramagnetic Resonance. In: Brustolon M, Giamello E, editors. Electron paramagnetic resonance: a practitioner's toolkit 2009. New Jersey: John Wiley & Sons; 2009. p. 1–36.

    Google Scholar 

  29. Petasis DT, Hendrich MP. Quantitative interpretation of multifrequency multimode epr spectra of metal containing proteins, enzymes, and biomimetic complexes. Methods Enzymol. 2015;563:171–208.

    Article  CAS  Google Scholar 

  30. Rizzi AC, Neuman NI, González PJ, Brondino CD. EPR as a tool for study of isolated and coupled paramagnetic centers in coordination compounds and macromolecules of biological interest. Eur J Inorg Chem. 2016;2016:192–207.

    Article  CAS  Google Scholar 

  31. Van Doorslaer S, Desmet F. The power of using continuous-wave and pulsed electron paramagnetic resonance methods for the structure analysis of ferric forms and nitric oxide-ligated ferrous forms of globins. Methods Enzymol. 2008;437:287–310.

    Article  Google Scholar 

  32. Patchkovskii S, Ziegler T. Structural origin of two paramagnetic species in six-coordinated nitrosoiron(ii) porphyrins revealed by density functional theory analysis of the g tensors. Inorg Chem. 2000;39:5354–64.

    Article  CAS  Google Scholar 

  33. Deligiannakis Y, Louloudi M, Hadjiliadis N. Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coord Chem Rev. 2000;204:1–112.

    Article  CAS  Google Scholar 

  34. Van Doorslaer S, Vinck E. The strength of EPR and ENDOR techniques in revealing structure-function relationships in metalloproteins. Phys Chem Chem Phys. 2007;9:4620–38.

    Article  Google Scholar 

  35. Dickinson LC, Symons MCR. Electron spin resonance of haemoglobin and myoglobin. Chem Soc Rev. 1983;12:387–414.

    Article  CAS  Google Scholar 

  36. Shiga T, Hwang RJ, Tyuma I. Electron paramagnetic resonance studies of nitric oxide hemoglobin derivatives. I. Human hemoglobin subunits. Biochemistry. 1969;7:378–83.

    Article  Google Scholar 

  37. Utterback SG, Doetschman DC, Szumowski J, Rizos AK. EPR study of the structure and spin distribution at the binding site in human nitrosyl hemoglobin single crystals. J Chem Phys. 1983;78:5874–80.

    Article  CAS  Google Scholar 

  38. Hori H, Ikeda-Saito M, Yonetani T. Single crystal EPR of myoglobin nitroxide. Freezing-induced reversible changes in the molecular orientation of the ligand. J Biol Chem. 1981;256:7849–55.

    CAS  PubMed  Google Scholar 

  39. Chien JCW, Dickinson LC. Nonequivalence of subunits in 15N Nitrosyl hemoglobin Kansas. A single crystal electron paramagnetic resonance investigation. J Biol Chem. 1977;252:1331–5.

    CAS  PubMed  Google Scholar 

  40. Copeland DM, Soares AS, West AH, Richter-Addo GBJ. Crystal structures of the nitrite and nitric oxide complexes of horse heart myoglobin. Inorg Bio Chem. 2006;100:1413–25.

    Article  CAS  Google Scholar 

  41. Schmidt PP, Kappl R, Hüttermann J. On the mode of hexacoordinated NO-binding to myo- and hemoglobin: variable-temperature EPR studies at multiple microwave frequencies. App Magn Reson. 2001;21:423–40.

    Article  CAS  Google Scholar 

  42. Hüttermann J, Burgard C, Kappl R. Proton ENDOR from randomly oriented NO-ligated haemoglobin: approaching the structural basis for the R–T transition. J Chem Soc Faraday Trans. 1994;90:3077–87.

    Article  Google Scholar 

  43. Luchsinger BP, Walter ED, Lee LJ, Stamler JS, Singel DJ. EPR studies of the chemical dynamics of NO and hemoglobin interactions. In: Hanson G, Berliner L, editors. High resolution EPR. Berlin, Heidelberg: Springer Science+Business Media; 2009. p. 419–38.

    Chapter  Google Scholar 

  44. Mun SK, Chang JC, Das TP. Origin of observed changes in 14N hyperfine Interaction accompanying R → T transition in nitrosyl hemoglobin. Proc Natl Acad Sci U S A. 1979;76:4842–6.

    Article  CAS  Google Scholar 

  45. Ascenzi A, Bocedi A, Fasano M, Gioia M, Marini S, Coletta M. Proton-linked subunit heterogeneity in ferrous nitrosylated human adult hemoglobin: an EPR study. J Inorg Biochem. 2005;99:1255–9.

    Article  CAS  Google Scholar 

  46. Kosaka H. Nitric oxide and hemoglobin interactions in the vasculature. Biochim Biophys Acta. 1999;1411:370–7.

    Article  CAS  Google Scholar 

  47. Jakubowska M, Michalczyk-Wetula D, Pyka J, Susz A, Urbanska K, Płonka BK, Kuleta P, Łącki P, Krzykawska-Serda M, Fiedor L, Płonka PM. Nitrosyl hemoglobin in photodynamically stressed human tumors growing in nude mice. Nitric Oxide. 2013;35:79–88.

    Article  CAS  Google Scholar 

  48. Plonka PM, Chlopicki S, Plonka BK, Jawien J, Gryglewski RJ. Endotoxaemia in rats: detection of nitrosyl-haemoglobin in blood and lung by EPR. Curr Top Biophys. 1999;23:47–53.

    CAS  Google Scholar 

  49. Lobysheva II, Biller P, Gallez B, Beauloye C, Balligand JL. Nitrosylated hemoglobin levels in human venous erythrocytes correlate with vascular endothelial function measured by digital reactive hyperemia. PLoS One. 2013;8:e76457. https://doi.org/10.1371/journal.pone.0076457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wajnberg E, Linhares MP, EI-Jaick J, Bemski G. Nitrosyl hemoglobin: EPR components at low temperatures. Eur Biophys J. 1992;21:57–61.

    Article  CAS  Google Scholar 

  51. Gunn A, Derbyshire ER, Marletta MA, Britt RD. Conformationally distinct five-coordinate heme−no complexes of soluble guanylate cyclase elucidated by multi frequency electron paramagnetic resonance (EPR). Biochemistry. 2012;51:8384–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Dutka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutka, M., Pyka, J., Płonka, P.M. (2019). EPR Studies on Understanding the Physical Intricacy of HbNO Complexes. In: Shukla, A. (eds) Electron Spin Resonance Spectroscopy in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2230-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2230-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2229-7

  • Online ISBN: 978-981-13-2230-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics