Skip to main content

Metabolic Alterations Amalgamated with Huntington’s Disease

  • Chapter
  • First Online:
Book cover Insights into Human Neurodegeneration: Lessons Learnt from Drosophila
  • 424 Accesses

Abstract

Huntington’s disease (HD) is a progressive monogenic neurodegenerative disease typified by loss of motor, psychiatric and cognitive function with no known cure. Additionally, the concomitant occurrence of metabolic disturbances including unintended weight loss has also been reported in HD patients. However, the pathophysiology remains largely unclear. The underlying pathophysiology comes further complex due to the ubiquitous expression of the causative huntingtin (HTT) gene. Research studies indicate functional changes in the peripheral organs of patients reflecting the involvement of peripheral component in metabolic disturbances observed in HD. Links between metabolic phenotype and neurodegeneration have also been suggested in HD patients. Altogether, these observations underscore the complexity of metabolic disturbances occurring in HD and accentuate the need to study this phenomenon in a combinatorial setting. Development of therapeutics targeting metabolic alterations in HD might abrogate some of the comorbidities and can substantially improve the quality of a patient’s life, and might even prevent premature death.

The fruit fly, Drosophila melanogaster, can provide a treasured genetic system to express the human huntingtin gene in a temporally regulated and tissue-specific pattern. Drosophila can contribute to deeper mechanistic insights into the metabolic defects underlying HD due to the presence of multiple evolutionarily conserved metabolic pathways. In this chapter, we highlight the genetics, epidemiology, and metabolic disturbances manifested in HD and how Drosophila melanogaster can be used as a powerful genetic model for unraveling the metabolic processes and pathways that go awry in HD as a foundation for translational research and developing new therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aditi, K., Shakarad, M. N., & Agrawal, N. (2016). Altered lipid metabolism in Drosophila model of Huntington’s disease. Scientific Reports, 6, 31411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahima, R. S. (2006). Adipose tissue as an endocrine organ. Obesity (Silver Spring), 14(Suppl. 5), 242S–249S.

    Article  CAS  Google Scholar 

  • Andrich, J. E., Wobben, M., Klotz, P., et al. (2009). Upper gastrointestinal findings in Huntington’s disease: Patients suffer but do not complain. Journal of Neural Transmission, 116, 1607–1611.

    Article  PubMed  Google Scholar 

  • Apidianakis, Y., & Rahme, L. G. (2011). Drosophila melanogaster as a model for human intestinal infection and pathology. Disease Models & Mechanisms, 4, 21–30.

    Article  CAS  Google Scholar 

  • Aziz, N. A., Swaab, D. F., Pijl, H., et al. (2007). Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington’s disease: Clinical consequences and therapeutic implications. Reviews in the Neurosciences, 18, 223–251.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, N. A., van der Burg, J. M., Landwehrmeyer, G. B., et al. (2008). Weight loss in Huntington disease increases with higher CAG repeat number. Neurology, 71, 1506–1513.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, N. A., Pijl, H., Frölich, M., et al. (2010a). Systemic energy homeostasis in Huntington’s disease patients. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 1233–1237.

    Article  PubMed  Google Scholar 

  • Aziz, N. A., Pijl, H., Frolich, M., et al. (2010b). Leptin secretion rate increases with higher CAG repeat number in Huntington’s disease patients. Clinical Endocrinology, 73, 206–211.

    Article  CAS  PubMed  Google Scholar 

  • Bacos, K., Björkqvist, M., Petersén, A., et al. (2008). Islet beta-cell area and hormone expression are unaltered in Huntington’s disease. Histochemistry and Cell Biology, 129, 623–629.

    Article  CAS  PubMed  Google Scholar 

  • Badman, M. K., & Flier, J. S. (2005). The gut and energy balance: Visceral allies in the obesity wars. Science, 307, 1909–1914.

    Article  CAS  PubMed  Google Scholar 

  • Baker, K. D., & Thummel, C. S. (2007). Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metabolism, 6, 257–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates, G. P., Dorsey, R., Gusella, J. F., et al. (2015). Huntington disease. Nature Reviews. Disease Primers, 1, 15005.

    Article  PubMed  Google Scholar 

  • Beconi, M. G., Yates, D., Lyons, K., et al. (2012). Metabolism and pharmacokinetics of JM6 in mice: JM6 is not a prodrug for Ro-61-8048. Drug Metabolism and Disposition, 40, 2297–2306.

    Article  CAS  PubMed  Google Scholar 

  • Björkqvist, M., Fex, M., Renström, E., et al. (2005). The R6/2 transgenic mouse model of Huntington’s disease develops diabetes due to deficient beta-cell mass and exocytosis. Human Molecular Genetics, 14, 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Boesgaard, T. W., Nielsen, T. T., Josefsen, K., et al. (2009). Huntington’s disease does not appear to increase the risk of diabetes mellitus. Journal of Neuroendocrinology, 21, 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Campesan, S., Green, E. W., Breda, C., et al. (2011). The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Current Biology, 21, 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, J. B., Bates, G. P., Steffan, J., et al. (2015). Treating the whole body in Huntington’s disease. Lancet Neurology, 14, 1135–1142.

    Article  PubMed  Google Scholar 

  • Chaturvedi, R. K., Adhihetty, P., Shukla, S., et al. (2009). Impaired PGC-1alpha function in muscle in Huntington’s disease. Human Molecular Genetics, 18, 3048–3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, M. C., Chen, H. M., Lee, Y. H., et al. (2007). Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington’s disease. Human Molecular Genetics, 16, 483–498.

    Article  CAS  PubMed  Google Scholar 

  • Chien, S., Reiter, L. T., Bier, E., & Gribskov, M. (2002). Homophila: Human disease gene cognates in Drosophila. Nucleic Acids Research, 30, 149–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, S. K., Ang, J. E., Revell, V. L., et al. (2014). Effect of sleep deprivation on the human metabolome. Proceedings of the National Academy of Sciences of the United States of America, 111, 10761–10766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiFiglia, M., Sapp, E., Chase, K. O., et al. (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 277, 1990–1993.

    Article  CAS  PubMed  Google Scholar 

  • Djousse, L., Knowlton, B., Cupples, L. A., et al. (2002). Weight loss in early stage of Huntington’s disease. Neurology, 59, 1325–1330.

    Article  CAS  PubMed  Google Scholar 

  • Fain, J. N., Del Mar, N. A., Meade, C. A., et al. (2001). Abnormalities in the functioning of adipocytes from R6/2 mice that are transgenic for the Huntington’s disease mutation. Human Molecular Genetics, 10, 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Farrer, L. A., & Meaney, F. J. (1985). An anthropometric assessment of Huntington’s disease patients and families. American Journal of Physical Anthropology, 67, 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Farrer, L. A., Yu, P. L., Opitz, J. M., et al. (1985). Anthropometric discrimination among affected, at-risk, and not-at-risk individuals in families with Huntington disease. American Journal of Medical Genetics, 21, 307–316.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, E. R., & Hayden, M. R. (2014). Multisource ascertainment of Huntington disease in Canada: Prevalence and population at risk. Movement Disorders, 29, 105–114.

    Article  PubMed  Google Scholar 

  • Flier, J. S. (2004). Obesity wars: Molecular progress confronts an expanding epidemic. Cell, 116, 337–350.

    Article  CAS  PubMed  Google Scholar 

  • Forrest, C. M., Mackay, G. M., Stoy, N., et al. (2010). Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. Journal of Neurochemistry, 112, 112–122.

    Article  CAS  PubMed  Google Scholar 

  • Gaba, A. M., Zhang, K., Marder, K., et al. (2005). Energy balance in early-stage Huntington disease. The American Journal of Clinical Nutrition, 81, 1335–1341.

    Article  CAS  PubMed  Google Scholar 

  • Gabery, S., Murphy, K., Schultz, K., et al. (2010). Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses. Acta Neuropathologica, 120, 777–788.

    Article  CAS  PubMed  Google Scholar 

  • Garg, A. (2004). Acquired and inherited lipodystrophies. The New England Journal of Medicine, 350, 1220–1234.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, A. O., Murgatroyd, P. R., Medina-Gomez, G., et al. (2008). The metabolic profile of early Huntington’s disease – A combined human and transgenic mouse study. Experimental Neurology, 210, 691–698.

    Article  CAS  PubMed  Google Scholar 

  • Graham, P., & Pick, L. (2017). Drosophila as a model for diabetes and diseases of insulin resistance. Current Topics in Developmental Biology, 121, 397–419.

    Article  CAS  PubMed  Google Scholar 

  • Guidetti, P., Luthi-Carter, R. E., Augood, S. J., et al. (2004). Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiology of Disease, 17, 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Gusella, J. F., MacDonald, M. E., & Lee, J. M. (2014). Genetic modifiers of Huntington’s disease. Movement Disorders, 29, 1359–1365.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, E., Wiggins, D., Fielding, B., et al. (2007). Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature, 445, 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Heemskerk, A. W., & Roos, R. A. (2011). Dysphagia in Huntington’s disease: A review. Dysphagia, 26, 62–66.

    Article  PubMed  Google Scholar 

  • Hensman Moss, D. J., Pardiñas, A. F., Langbehn, D., et al. (2017). Identification of genetic variants associated with Huntington’s disease progression: A genome-wide association study. Lancet Neurology, 16, 701–711.

    Article  Google Scholar 

  • Hespel, P., Lijnen, P., Vanhees, L., et al. (1986). Differentiation of exercise-induced metabolic responses during selective beta 1- and beta 2-antagonism. Medicine and Science in Sports and Exercise, 18, 186–191.

    Article  CAS  PubMed  Google Scholar 

  • Heyes, M. P., Saito, K., Crowley, J. S., et al. (1992). Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain, 115, 1249–1273.

    Article  PubMed  Google Scholar 

  • Hill, J. W., Elmquist, J. K., & Elias, C. F. (2008). Hypothalamic pathways linking energy balance and reproduction. American Journal of Physiology, Endocrinology and Metabolism, 294, E827–E832.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, R., Stuwe, S. H., Goetze, O., et al. (2014). Progressive hepatic mitochondrial dysfunction in premanifest Huntington’s disease. Movement Disorders, 29, 831–834.

    Article  CAS  PubMed  Google Scholar 

  • Hoogeveen, A. T., Willemsen, R., Meyer, N., et al. (1993). Characterization and localization of the Huntington disease gene product. Human Molecular Genetics, 2, 2069–2073.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Liang, J., & Yu, S. (2014). High prevalence of diabetes mellitus in a five-generation Chinese family with Huntington’s disease. Journal of Alzheimer’s Disease, 40, 863–868.

    Article  CAS  PubMed  Google Scholar 

  • Hult, S., Soylu, R., Bjorklund, T., et al. (2011). Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metabolism, 13, 428–439.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, M. J., & Morton, A. J. (2005). Atypical diabetes associated with inclusion formation in the R6/2 mouse model of Huntington’s disease is not improved by treatment with hypoglycaemic agents. Experimental Brain Research, 166, 220–229.

    Article  CAS  PubMed  Google Scholar 

  • Huntington, G. (1872). On chorea. The Medical and Surgical Report Philadelphia, 26, 317–321.

    Google Scholar 

  • Hurlbert, M. S., Zhou, W., Wasmeier, C., et al. (1999). Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes, 48, 649–651.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, G. R., Salecker, I., Dong, X., et al. (1998). Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron, 21, 633–642.

    Article  CAS  PubMed  Google Scholar 

  • Jauch, D., Urbanska, E. M., Guidetti, P., Bird, E. D., Vonsattel, J. P., Whetsell, W. O., Jr., et al. (1995). Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: Focus on kynurenine aminotransferases. Journal of the Neurological Sciences, 130, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Josefsen, K., Nielsen, S. M., Campos, A., et al. (2010). Reduced gluconeogenesis and lactate clearance in Huntington’s disease. Neurobiology of Disease, 40, 656–662.

    Article  CAS  PubMed  Google Scholar 

  • Kassubek, J., Gaus, W., & Landwehrmeyer, G. B. (2004). Evidence for more widespread cerebral pathology in early HD: An MRI-based morphometric analysis. Neurology, 62, 523–524.

    Article  PubMed  Google Scholar 

  • Kay, C., Collins, J. A., Miedzybrodzka, Z., et al. (2016). Huntington disease reduced penetrance alleles occur at high frequency in the general population. Neurology, 87, 282–288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kay, C., Collins, J. A., & Wright, G. E. B. (2018). The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 177, 346–357.

    Article  CAS  Google Scholar 

  • Killoran, A., & Biglan, K. M. (2014). Current therapeutic options for Huntington’s disease: Good clinical practice versus evidence-based approaches? Movement Disorders, 29, 1404–1413.

    Article  PubMed  Google Scholar 

  • Kobal, J., Matej, K., Koželj, M., et al. (2018). Anorectal dysfunction in presymptomatic mutation carriers and patients with Huntington’s disease. Journal of Huntingtons Disease, 7, 259–267.

    Article  CAS  Google Scholar 

  • Kremer, H. P., & Roos, R. A. (1992). Weight loss in Huntington’s disease. Archives of Neurology, 49, 349.

    Article  CAS  PubMed  Google Scholar 

  • Kremer, H. P., Roos, R. A., Dingjan, G., et al. (1990). Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 49, 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Kremer, H. P., Roos, R. A., Dingjan, G. M., et al. (1991). The hypothalamic lateral tuberal nucleus and the characteristics of neuronal loss in Huntington’s disease. Neuroscience Letters, 132, 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Lalic, N. M., Maric, J., Svetel, M., et al. (2008). Glucose homeostasis in Huntington disease: Abnormalities in insulin sensitivity and early-phase insulin secretion. Archives of Neurology, 65, 476–480.

    Article  PubMed  Google Scholar 

  • Landles, C., Sathasivam, K., & Weiss Aet al. (2010). Proteolysis of mutant huntingtin produces an exon one fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. The Journal of Biological Chemistry, 285, 8808–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanska, D. J., Lanska, M. J., Lavine, L., et al. (1988). Conditions associated with Huntington’s disease at death. A case-control study. Archives of Neurology, 45, 878–880.

    Article  CAS  PubMed  Google Scholar 

  • Lazar, A. S., Panin, F., & Goodman, A. O. (2015). Sleep deficits but no metabolic deficits in premanifest Huntington’s disease. Annals of Neurology, 78, 630–648.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Floc’h, N., Otten, W., & Merlot, E. (2011). Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids, 41, 1195–1205.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. M., Ramos, E. M., Lee, J. H., et al. (2012). CAG repeat expansion in Huntington disease determines the age at onset in a fully dominant fashion. Neurology, 78, 690–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leopold, P., & Perrimon, N. (2007). Drosophila and the genetics of the internal milieu. Nature, 450, 186–188.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, E. A., & Smith, G. A. (2015). Using Drosophila models of Huntington’s disease as a translatable tool. Journal of Neuroscience Methods, 265, 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Li, S. H., Schilling, G., Young, W. S., et al. (1993). Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron, 11, 985–993.

    Article  CAS  PubMed  Google Scholar 

  • Lunkes, A., Lindenberg, K. S., Ben-Haïem, L., et al. (2002). Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Molecular Cell, 10, 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Luthi-Carter, R., Hanson, S. A., Strand, A. D., et al. (2002). Dysregulation of gene expression in the R6/2 model of polyglutamine disease: Parallel changes in muscle and brain. Human Molecular Genetics, 11, 1911–1926.

    Article  CAS  PubMed  Google Scholar 

  • Maddison, D. C., & Giorgini, F. (2015). The kynurenine pathway and neurodegenerative disease. Seminars in Cell & Developmental Biology, 40, 134–141.

    Article  CAS  Google Scholar 

  • Marder, K., Zhao, H., Eberly, S., et al. (2009). Dietary intake in adults at risk for Huntington disease: Analysis of PHAROS research participants. Neurology, 73, 385–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques Sousa, C., & Humbert, S. (2013). Huntingtin: Here, there, everywhere! Journal of Huntingtons Disease, 2, 395–403.

    Article  Google Scholar 

  • Marsh, J. L., Pallos, J., & Thompson, L. M. (2003). Fly models of Huntington’s disease. Human Molecular Genetics, 12, R187–R193.

    Article  CAS  PubMed  Google Scholar 

  • Martin, B., Golden, E., Carlson, O. D., et al. (2009). Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease. Diabetes, 58, 318–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Vicente, M., Talloczy, Z., Wong, E., et al. (2010). Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nature Neuroscience, 13, 567–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marullo, M., Valenza, M., Mariotti, C., et al. (2008). Analysis of the repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy of non-neuronal genes in peripheral lymphocytes from patients with Huntington’s disease. Brain Pathology, 20, 96–105.

    Article  PubMed  CAS  Google Scholar 

  • McCourt, A. C., Parker, J., Silajdžić, E., et al. (2015). Analysis of white adipose tissue gene expression reveals CREB1 pathway altered in Huntington’s disease. Journal of Huntingtons Disease, 4, 371–382.

    Article  CAS  Google Scholar 

  • Mochel, F., Charles, P., Seguin, F., et al. (2007). Early energy deficit in Huntington disease: Identification of a plasma biomarker traceable during disease progression. PLoS One, 2, e647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales, L. M., Estévez, J., Suárez, H., et al. (1989). Nutritional evaluation of Huntington disease patients. The American Journal of Clinical Nutrition, 50, 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Morton, G. J., Cummings, D. E., Baskin, D. G., et al. (2006). Central nervous system control of food intake and body weight. Nature, 443, 289–295.

    Article  CAS  PubMed  Google Scholar 

  • Myers, R. H., Sax, D. S., Koroshetz, W. J., et al. (1991). Factors associated with slow progression in Huntington’s disease. Archives of Neurology, 48, 800–804.

    Article  CAS  PubMed  Google Scholar 

  • Nambron, R., Silajdžić, E., Kalliolia, E., et al. (2016). A metabolic study of Huntington’s disease. PLoS One, 11, e0146480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neueder, A., Landles, C., Ghosh, R., et al. (2017). The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Scientific Reports, 7, 1307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owusu-Ansah, E., & Perrimon, N. (2014). Modeling metabolic homeostasis and nutrient sensing in Drosophila: Implications for aging and metabolic diseases. Disease Models & Mechanisms, 7, 343–350.

    Article  CAS  Google Scholar 

  • Panov, A. V., Gutekunst, C. A., Leavitt, B. R., et al. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nature Neuroscience, 5, 731–736.

    Article  CAS  PubMed  Google Scholar 

  • Panov, A. V., Lund, S., & Greenamyre, J. T. (2005). Ca2+-induced permeability transition in human lymphoblastoid cell mitochondria from normal and Huntington’s disease individuals. Molecular and Cellular Biochemistry, 269, 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Petersén, A., & Björkqvist, M. (2006). Hypothalamic-endocrine aspects in Huntington’s disease. The European Journal of Neuroscience, 24, 961–967.

    Article  PubMed  Google Scholar 

  • Petersen, A., Gil, J., Maat-Schieman, M. L., et al. (2005). Orexin loss in Huntington’s disease. Human Molecular Genetics, 14, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Phan, J., Hickey, M. A., Zhang, P., et al. (2009). Adipose tissue dysfunction tracks disease progression in two Huntington’s disease mouse models. Human Molecular Genetics, 18, 1006–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilkis, S. J., & Granner, D. K. (1992). Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annual Review of Physiology, 54, 885–909.

    Article  CAS  PubMed  Google Scholar 

  • Podolsky, S., & Leopold, N. A. (1977). Abnormal glucose tolerance and arginine tolerance tests in Huntington’s disease. Gerontology, 23, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Podolsky, S., Leopold, N. A., & Sax, D. S. (1972). Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet, 1, 1356–1358.

    Article  CAS  PubMed  Google Scholar 

  • Popovic, V., Svetel, M., Djurovic, M., et al. (2004). Circulating and cerebrospinal fluid ghrelin and leptin: Potential role in altered body weight in Huntington’s disease. European Journal of Endocrinology, 151, 451–455.

    Article  CAS  PubMed  Google Scholar 

  • Pratley, R. E., Salbe, A. D., Ravussin, E., et al. (2000). Higher sedentary energy expenditure in patients with Huntington’s disease. Annals of Neurology, 47, 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim, T., Wiltshire, K., Day, L., et al. (2012). The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Movement Disorders, 27, 1083–1091.

    Article  PubMed  Google Scholar 

  • Rawlins, M. D., Wexler, N. S., Wexler, A. R., et al. (2016). The prevalence of Huntington’s disease. Neuroepidemiology, 46, 144–153.

    Article  PubMed  Google Scholar 

  • Reiter, L. T., Potocki, L., Chien, S., et al. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11, 1114–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristow, M. (2004). Neurodegenerative disorders associated with diabetes mellitus. Journal of Molecular Medicine, 82, 510–529.

    Article  PubMed  Google Scholar 

  • Robbins, A. O., Ho, A. K., & Barker, R. A. (2006). Weight changes in Huntington’s disease. European Journal of Neurology, 13, e7.

    Article  CAS  PubMed  Google Scholar 

  • Ross, C. A., Aylward, E. H., Wild, E. J., et al. (2014). Huntington disease: Natural history, biomarkers, and prospects for therapeutics. Nature Reviews. Neurology, 10, 204–216.

    Article  CAS  PubMed  Google Scholar 

  • Rubin, G. M., Yandell, M. D., Wortman, J. R., et al. (2000). Comparative genomics of the eukaryotes. Science, 287, 2204–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein, D. C., Leggo, J., Coles, R., et al. (1996). Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. American Journal of Human Genetics, 59, 16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russo, C. V., Salvatore, E., Sacca, F., et al. (2013). Insulin sensitivity and early-phase insulin secretion in normoglycemic Huntington’s disease patients. Journal of Huntingtons Disease, 2, 501–507.

    Article  CAS  Google Scholar 

  • Sanberg, P. R., Fibiger, H. C., & Mark, R. F. (1981). Body weight and dietary factors in Huntington’s disease patients compared with matched controls. The Medical Journal of Australia, 1, 407–409.

    Article  CAS  PubMed  Google Scholar 

  • Sathasivam, K., Neueder, A., Gipson, T. A., et al. (2013). Aberrant splicing of HTT generates the pathogenic exon one protein in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 110, 2366–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saudou, F., & Humbert, S. (2016). The biology of Huntingtin. Neuron, 89, 910–926.

    Article  CAS  PubMed  Google Scholar 

  • Sipilä, J. O., Hietala, M., Siitonen, A., et al. (2015). Epidemiology of Huntington’s disease in Finland. Parkinsonism & Related Disorders, 21, 46–49.

    Article  Google Scholar 

  • Stoy, N., & McKay, E. (2000). Weight loss in Huntington’s disease. Annals of Neurology, 48, 130–131.

    Article  CAS  PubMed  Google Scholar 

  • Stoy, N., Mackay, G. M., Forrest, C. M., et al. (2005). Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. Journal of Neurochemistry, 93, 611–623.

    Article  CAS  PubMed  Google Scholar 

  • Strand, A. D., Aragaki, A. K., Shaw, D., et al. (2005). Gene expression in Huntington’s disease skeletal muscle: A potential biomarker. Human Molecular Genetics, 14, 1863–1876.

    Article  CAS  PubMed  Google Scholar 

  • Strong, T. V., Tagle, D. A., Valdes, J. M., et al. (1993). Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues. Nature Genetics, 5, 259–265.

    Article  CAS  PubMed  Google Scholar 

  • Stuwe, S. H., Goetze, O., Lukas, C., et al. (2013). Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease. Neurology, 80, 743–746.

    Article  PubMed  CAS  Google Scholar 

  • Sussmuth, S. D., Muller, V. M., Geitner, C., et al. (2015). Fat-free mass and its predictors in Huntington’s disease. Journal of Neurology, 262, 1533–1540.

    Article  CAS  PubMed  Google Scholar 

  • Tabrizi, S. J., Scahill, R. I., Owen, G., et al. (2013). Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data. Lancet Neurology, 12, 637–649.

    Article  PubMed  Google Scholar 

  • Tennessen, J. M., Barry, W. E., Cox, J., & Thummel, C. S. (2014). Methods for studying metabolism in Drosophila. Methods, 68, 105–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72, 971–983.

    Article  Google Scholar 

  • Thompson, J. C., Harris, J., Sollom, A. C., et al. (2012). Longitudinal evaluation of neuropsychiatric symptoms in Huntington’s disease. The Journal of Neuropsychiatry and Clinical Neurosciences, 24, 53–60.

    Article  PubMed  Google Scholar 

  • Timmers, H. J., Swaab, D. F., van de Nes, J. A., et al. (1996). Somatostatin 1–12 immunoreactivity is decreased in the hypothalamic lateral tuberal nucleus of Huntington’s disease patients. Brain Research, 728, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Trejo, A., Tarrats, R. M., Alonso, M. E., et al. (2004). Assessment of the nutrition status of patients with Huntington’s disease. Nutrition, 20, 192–196.

    Article  CAS  PubMed  Google Scholar 

  • Tripathy, D., Carlsson, M., Almgren, P., et al. (2000). Insulin secretion and insulin sensitivity in relation to glucose tolerance: Lessons from the Botnia Study. Diabetes, 49, 975–980.

    Article  CAS  PubMed  Google Scholar 

  • Trujillo, M. E., & Scherer, P. E. (2006). Adipose tissue-derived factors: Impact on health and disease. Endocrine Reviews, 27, 762–778.

    Article  CAS  PubMed  Google Scholar 

  • Valenza, M., Rigamonti, D., Goffredo, D., et al. (2005). Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. The Journal of Neuroscience, 25, 9932–9939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenza, M., Carroll, J. B., Leoni, V., et al. (2007a). Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Human Molecular Genetics, 16, 2187–2198.

    Article  CAS  PubMed  Google Scholar 

  • Valenza, M., Leoni, V., Tarditi, A., et al. (2007b). Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington’s disease. Neurobiology of Disease, 28, 133–142.

    Article  CAS  PubMed  Google Scholar 

  • van der Burg, J. M., Bacos, K., Wood, N. I., et al. (2008). Increased metabolism in the R6/2 mouse model of Huntington’s disease. Neurobiology of Disease, 29, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • van der Burg, J. M., Björkqvist, M., & Brundin, P. (2009). Beyond the brain: Widespread pathology in Huntington’s disease. Lancet Neurology, 8, 765–774.

    Article  PubMed  Google Scholar 

  • van der Burg, J. M., Winqvist, A., Aziz, N. A., et al. (2011). Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiology of Disease, 44, 1–8.

    Article  PubMed  Google Scholar 

  • van der Burg, J. M. M., Gardiner, S. L., Ludolph, A. C., et al. (2017). Body weight is a robust predictor of clinical progression in Huntington disease. Annals of Neurology, 82, 479–483.

    Article  PubMed  Google Scholar 

  • Vonsattel, J. P., Myers, R. H., Stevens, T. J., et al. (1985). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44, 559–577.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Ross, C. A., Cai, H., et al. (2014). Metabolic and hormonal signatures in premanifest and manifest Huntington’s disease patients. Frontiers in Physiology, 5, 231.

    PubMed  PubMed Central  Google Scholar 

  • Waters, C. O. (1842). Description of chorea. In R. Dunglison (Ed.), Practice of medicine. Philadelphia: Lea & Blanchard.

    Google Scholar 

  • Weydt, P., Pineda, V. V., Torrence, A. E., et al. (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metabolism, 4, 349–362.

    Article  CAS  PubMed  Google Scholar 

  • Wood, N. I., Goodman, A. O., van der Burg, J. M., et al. (2008). Increased thirst and drinking in Huntington’s disease and the R6/2 mouse. Brain Research Bulletin, 76, 70–79.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M., & Wu, Z. Y. (2015). Huntington disease in Asia. Chinese Medical Journal, 128, 1815–1819.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarowitz, B. J., O’Shea, T., & Nance, M. (2014). Clinical, demographic, and pharmacologic features of nursing home residents with Huntington’s disease. Journal of the American Medical Directors Association, 15, 423–428.

    Article  PubMed  Google Scholar 

  • Zwilling, D., Huang, S. Y., Sathyasaikumar, K. V., et al. (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 145, 863–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakra, P., Agrawal, N. (2019). Metabolic Alterations Amalgamated with Huntington’s Disease. In: Mutsuddi, M., Mukherjee, A. (eds) Insights into Human Neurodegeneration: Lessons Learnt from Drosophila. Springer, Singapore. https://doi.org/10.1007/978-981-13-2218-1_6

Download citation

Publish with us

Policies and ethics