Skip to main content

Understanding Neurodegeneration and Neuroprotection Through Genetic Screens in Drosophila

  • Chapter
  • First Online:

Abstract

Drosophila genetic screens have been invaluable in understanding neurodegenerative diseases (NDD) and neuronal maintenance. The modeling of several human neurodegenerative diseases such as Alzheimer’s and Parkinson’s in Drosophila and subsequent modifier genetic screens for neurodegenerative phenotypes have been instrumental in identifying the molecular mechanisms of neurodegeneration as well as the cellular function of genes implicated in neurodegeneration. For instance, studies on Drosophila homologs of PINK1 and PARKIN, genes implicated in Parkinson’s disease, identified their roles in mitochondrial quality control. Interestingly, unbiased genetic screens for fly mutants with neurodegenerative phenotypes have also identified many genes implicated in neurodegenerative diseases and have led to the discovery of novel players regulating neuronal health and maintenance. Drosophila has emerged as a valuable screening platform for validating the pathogenicity of variants identified through whole-genome sequencing of patients with neurodegenerative diseases and has thus fast-tracked the identification of causative mutations. With rapid and consistent development of genome editing technologies, together with amenability for genetic screens, Drosophila will continue to serve as a great system to study neurodegeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

APOE:

Apolipoprotein E

APP:

Amyloid precursor protein

CMT:

Charcot-Marie-Tooth disease

EMS:

Ethyl methyl sulfonate

ER:

Endoplasmic reticulum

ERG:

Electroretinogram

FATP:

Fatty acid transport proteins

FHM:

Familial hemiplegic migraine

iPSC:

Induced pluripotent stem cells

LD:

Lipid droplet

MCTs:

Monocarboxylate transporters

ND:

Neurodegeneration/neurodegenerative

NDD:

Neurodegenerative diseases

NGS:

Next-generation sequencing

NTE:

Neuropathy target esterase

PD:

Parkinson’s disease

PDF:

Pigment-dispersing factor

RDP:

Rapid-onset dystonia-parkinsonism

TCA Cycle:

Tricarboxylic acid cycle

UAS:

Upstream activating sequence

UPRmt:

Mitochondrial unfolded protein response

WES:

Whole exome sequencing

WGS:

Whole-genome sequencing

References

  • Abeliovich, A., & Gitler, A. D. (2016, November 10). Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature, 539(7628), 207–216.

    Article  PubMed  Google Scholar 

  • Aperia, A. (2007, Jan). New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. Journal of Internal Medicine, 261(1), 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Ashmore, L. J., Hrizo, S. L., Paul, S. M., Van Voorhies, W. A., Beitel, G. J., & Palladino, M. J. (2009, September). Novel mutations affecting the Na, K ATPase alpha model complex neurological diseases and implicate the sodium pump in increased longevity. Human Genetics, 126(3), 431–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auluck, P. K., Chan, H. Y. E., Trojanowski, J. Q., Lee, V. M. Y., & Bonini, N. M. (2002, February 1). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science, 295(5556), 865–868.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, K. R., Godena, V. K., Hewitt, V. L., & Whitworth, A. J. (2016, June 15). Axonal transport defects are a common phenotype in Drosophila models of ALS. Human Molecular Genetics, 25(12), 2378–2392.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayat, V., Thiffault, I., Jaiswal, M., Tétreault, M., Donti, T., Sasarman, F., et al. (2012, March 20). Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biology, 10(3), e1001288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellen, H. J., Levis, R. W., He, Y., Carlson, J. W., Evans-Holm, M., Bae, E., et al. (2011, July 1). The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics, 188(3), 731–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettencourt da Cruz, A., Wentzell, J., & Kretzschmar, D. (2008, October 22). Swiss Cheese, a protein involved in progressive neurodegeneration, acts as a noncanonical regulatory subunit for PKA-C3. The Journal of Neuroscience, 28(43), 10885–10892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilder, D., & Irvine, K. D. (2017). Taking stock of the drosophila research ecosystem. Genetics, 206(3), 1227–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilen, J., & Bonini, N. M. (2007, October). Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genetics, 3(10), 1950–1964.

    Article  CAS  PubMed  Google Scholar 

  • Bökel, C. (2008). EMS screens: From mutagenesis to screening and mapping. Methods in Molecular Biology, 420, 119–138.

    Article  PubMed  Google Scholar 

  • Bradley, J. L., Blake, J. C., Chamberlain, S., Thomas, P. K., Cooper, J. M., & Schapira, A. H. (2000, January 22). Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Human Molecular Genetics, 9(2), 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Branco, J., Al-Ramahi, I., Ukani, L., Pérez, A. M., Fernandez-Funez, P., Rincón-Limas, D., et al. (2008, February 1). Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Human Molecular Genetics, 17(3), 376–390.

    Article  CAS  PubMed  Google Scholar 

  • Brodowicz, J., Przegaliński, E., Müller, C. P., & Filip, M. (2018). Ceramide and its related neurochemical networks as targets for some brain disorder therapies. Neurotoxicity Research, 33(2), 474–484.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T. L., & Meloche, T. M. (2016, July 4). Exome sequencing a review of new strategies for rare genomic disease research. Genomics, 108(3-4), 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan, R. L., & Benzer, S. (1993, May). Defective glia in the Drosophila brain degeneration mutant drop-dead. Neuron, 10(5), 839–850.

    Article  CAS  PubMed  Google Scholar 

  • Butler, E. K., Voigt, A., Lutz, A. K., Toegel, J. P., Gerhardt, E., Karsten, P., et al. (2012, February 2). The mitochondrial chaperone protein TRAP1 mitigates α-Synuclein toxicity. PLoS Genetics, 8(2), e1002488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, W., Song, H.-J., Gangi, T., Kelkar, A., Antani, I., Garza, D., et al. (2008, March). Identification of novel genes that modify phenotypes induced by Alzheimer’s beta-amyloid overexpression in Drosophila. Genetics, 178(3), 1457–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., Chtarbanova, S., Petersen, A. J., & Ganetzky, B. (2013, May 7). Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proceedings of the National Academy of Sciences of the United States of America, 110(19), E1752–E1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casci, I., & Pandey, U. B. (2015, May 14). A fruitful endeavor: Modeling ALS in the fruit fly. Brain Research, 1607, 47–74.

    Article  CAS  PubMed  Google Scholar 

  • Celotto, A. M., Frank, A. C., McGrath, S. W., Fergestad, T., Van Voorhies, W. A., Buttle, K. F., et al. (2006, January 18). Mitochondrial encephalomyopathy in Drosophila. The Journal of Neuroscience, 26(3), 810–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarti, A., Clark, A. G., & Mootha, V. K. (2013, September 26). Distilling pathophysiology from complex disease genetics. Cell, 155(1), 21–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, T.-Y., Yamauchi, Y., Hasan, M. T., & Chang, C. (2017, March 15). Cellular cholesterol homeostasis and Alzheimer’s disease. Journal of Lipid Research, 58(12), 2239–2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplot, K., Pimpale, L., Ramalingam, B., Deivasigamani, S., Kamat, S., & Ratnaparkhi, G. S. (2018, July 13). SOD1 activity thresholds and TOR signalling modulate VAP(P58S) aggregation via ROS-induced proteasomal degradation in a Drosophila model of Amyotrophic Lateral Sclerosis. BioRxiv. https://doi.org/10.1101/368100.

  • Chen, L., & Feany, M. B. (2005, May). Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature Neuroscience, 8(5), 657–663.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., Lin, G., Haelterman, N. A., Ho, T. S.-Y., Li, T., Li, Z., et al. (2016a, June 25). Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration. eLife, 5, pii: e16043.

    Article  Google Scholar 

  • Chen, K., Ho, T. S.-Y., Lin, G., Tan, K. L., Rasband, M. N., & Bellen, H. J. (2016b, November 30). Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals. eLife, 5, pii: e20732.

    Google Scholar 

  • Chiang, P.-W., Wang, J., Chen, Y., Fu, Q., Zhong, J., Chen, Y., et al. (2012, September). Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis. Nature Genetics, 44(9), 972–974.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J., Gao, J., Kim, J., Hong, C., Kim, J., & Tontonoz, P. (2015, November 18). The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis. Science Translational Medicine, 7(314), 314ra184.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chong, J. X., Buckingham, K. J., Jhangiani, S. N., Boehm, C., Sobreira, N., Smith, J. D., et al. (2015, August 6). The genetic basis of mendelian phenotypes: Discoveries, challenges, and opportunities. American Journal of Human Genetics, 97(2), 199–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang, C.-L., Lu, Y.-N., Wang, H.-C., & Chang, H.-Y. (2014, November 1). Genetic dissection reveals that Akt is the critical kinase downstream of LRRK2 to phosphorylate and inhibit FOXO1, and promotes neuron survival. Human Molecular Genetics, 23(21), 5649–5658.

    Article  CAS  PubMed  Google Scholar 

  • Clark, I. E., Dodson, M. W., Jiang, C., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441(7097), 1162–1166.

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Carmon, D., & Meshorer, E. (2012, October). Polyglutamine (polyQ) disorders: The chromatin connection. Nucleus, 3(5), 433–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooley, L., Kelley, R., & Spradling, A. (1988, March 4). Insertional mutagenesis of the Drosophila genome with single P elements. Science, 239(4844), 1121–1128.

    Article  CAS  PubMed  Google Scholar 

  • D’Argenio, V. (2018, March 2). The high-throughput analyses era: Are we ready for the data struggle? High-Throughput, 7(1), E8.

    Article  PubMed  CAS  Google Scholar 

  • David-Morrison, G., Xu, Z., Rui, Y.-N., Charng, W.-L., Jaiswal, M., Yamamoto, S., et al. (2016, January 25). WAC regulates mTOR activity by acting as an adaptor for the TTT and pontin/reptin complexes. Developmental Cell, 36(2), 139–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson, T. M., Golde, T. E., & Lagier-Tourenne, C. (2018, October). Animal models of neurodegenerative diseases. Nature Neuroscience, 21(10), 1370–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Carvalho Aguiar, P., Sweadner, K. J., Penniston, J. T., Zaremba, J., Liu, L., Caton, M., et al. (2004, July 22). Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron, 43(2), 169–175.

    Article  PubMed  Google Scholar 

  • Deczkowska, A., & Schwartz, M. (2018, November 5). Targeting neuro-immune communication in neurodegeneration: Challenges and opportunities. The Journal of Experimental Medicine, 215(11), 2702–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deivasigamani, S., Verma, H. K., Ueda, R., Ratnaparkhi, A., & Ratnaparkhi, G. S. (2014, October 31). A genetic screen identifies Tor as an interactor of VAPB in a Drosophila model of amyotrophic lateral sclerosis. Biology open, 3(11), 1127–1138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaper, D. C., Adachi, Y., Lazarou, L., Greenstein, M., Simoes, F. A., Di Domenico, A., et al. (2013, October 1). Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD. Human Molecular Genetics, 22(19), 3883–3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dourlen, P., Bertin, B., Chatelain, G., Robin, M., Napoletano, F., Roux, M. J., et al. (2012, July 26). Drosophila fatty acid transport protein regulates rhodopsin-1 metabolism and is required for photoreceptor neuron survival. PLoS Genetics, 8(7), e1002833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dung, V. M., & Thao, D. T. P. (2018). Parkinson’s disease model. Advances in Experimental Medicine and Biology, 1076, 41–61.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, S., Rieche, F., Eckl, N., Duch, C., & Kretzschmar, D. (2016, March). Glial expression of Swiss cheese (SWS), the Drosophila orthologue of neuropathy target esterase (NTE), is required for neuronal ensheathment and function. Disease Models & Mechanisms, 9(3), 283–294.

    Article  CAS  Google Scholar 

  • Eberl, D. F., Duyk, G. M., & Perrimon, N. (1997, December 23). A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14837–14842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, S. L., Beesley, J., French, J. D., & Dunning, A. M. (2013, November 7). Beyond GWASs: Illuminating the dark road from association to function. American Journal of Human Genetics, 93(5), 779–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkins, J. S., Douglas, V. C., & Johnston, S. C. (2004). Alzheimer disease risk and genetic variation in ACE: A meta-analysis. Neurology, 62(3), 363–368.

    Google Scholar 

  • Esposito, G., Ana Clara, F., & Verstreken, P. (2012, January). Synaptic vesicle trafficking and Parkinson’s disease. Developmental Neurobiology, 72(1), 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Esposito, G., Vos, M., Vilain, S., Swerts, J., De Sousa Valadas, J., Van Meensel, S., et al. (2013, April 25). Aconitase causes iron toxicity in Drosophila pink1 mutants. PLoS Genetics, 9(4), e1003478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feany, M. B., & Bender, W. W. (2000, March 23). A Drosophila model of Parkinson’s disease. Nature, 404(6776), 394–398.

    Article  CAS  PubMed  Google Scholar 

  • Feiguin, F., Godena, V. K., Romano, G., D’Ambrogio, A., Klima, R., & Baralle, F. E. (2009, May 19). Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Letters, 583(10), 1586–1592.

    Article  CAS  PubMed  Google Scholar 

  • Fergestad, T., Sale, H., Bostwick, B., Schaffer, A., Ho, L., Robertson, G. A., et al. (2010, March 23). A Drosophila behavioral mutant, down and out (dao), is defective in an essential regulator of Erg potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 107(12), 5617–5621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes, C., & Rao, Y. (2011, April 19). Genome-wide screen for modifiers of Parkinson’s disease genes in Drosophila. Molecular Brain, 4, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernius, J., Starkenberg, A., & Thor, S. (2017, August 1). Bar-coding neurodegeneration: Identifying subcellular effects of human neurodegenerative disease proteins using Drosophila leg neurons. Disease Models & Mechanisms, 10(8), 1027–1038.

    Article  CAS  Google Scholar 

  • Ferreira, C. R., & Gahl, W. A. (2017, May 25). Lysosomal storage diseases. Translational Science of Rare Diseases, 2(1-2), 1–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fortini, M. E., & Bonini, N. M. (2000, April). Modeling human neurodegenerative diseases in Drosophila: On a wing and a prayer. Trends in Genetics, 16(4), 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Freibaum, B. D., Lu, Y., Lopez-Gonzalez, R., Kim, N. C., Almeida, S., Lee, K.-H., et al. (2015, September 3). GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature, 525(7567), 129–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frickenhaus, M., Wagner, M., Mallik, M., Catinozzi, M., & Storkebaum, E. (2015, March 16). Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons. Scientific Reports, 5, 9107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallardo, G., Barowski, J., Ravits, J., Siddique, T., Lingrel, J. B., Robertson, J., et al. (2014, December). An α2-Na/K ATPase/α-adducin complex in astrocytes triggers non-cell autonomous neurodegeneration. Nature Neuroscience, 17(12), 1710–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambis, A., Dourlen, P., Steller, H., & Mollereau, B. (2011, March 1). Two-color in vivo imaging of photoreceptor apoptosis and development in Drosophila. Developmental Biology, 351(1), 128–134.

    Article  CAS  PubMed  Google Scholar 

  • Ganetzky, B., & Wu, C. F. (1982, April). Indirect suppression involving behavioral mutants with altered nerve excitability in DROSOPHILA MELANOGASTER. Genetics, 100(4), 597–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Marosi, M., Choi, J., Achiro, J. M., Kim, S., Li, S., et al. (2017, September 11). The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning. eLife, 6, pii: e29178.

    Article  Google Scholar 

  • Gehrke, S., Imai, Y., Sokol, N., & Lu, B. (2010, July 29). Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature, 466(7306), 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstner, J. R., Lenz, O., Vanderheyden, W. M., Chan, M. T., Pfeiffenberger, C., & Pack, A. I. (2017). Amyloid-β induces sleep fragmentation that is rescued by fatty acid binding proteins in Drosophila. Journal of Neuroscience Research, 95(8), 1548–1564.

    Article  CAS  PubMed  Google Scholar 

  • Gitler, A. D., Dhillon, P., & Shorter, J. (2017, May 1). Neurodegenerative disease: Models, mechanisms, and a new hope. Disease Models & Mechanisms, 10(5), 499–502.

    Article  CAS  Google Scholar 

  • Gnerer, J. P., Kreber, R. A., & Ganetzky, B. (2006, October 10). wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 14987–14993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greeve, I., Kretzschmar, D., Tschäpe, J.-A., Beyn, A., Brellinger, C., Schweizer, M., et al. (2004, April 21). Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. The Journal of Neuroscience, 24(16), 3899–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigliatti, T. A., Hall, L., Rosenbluth, R., & Suzuki, D. T. (1973, January 24). Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Molecular & General Genetics, 120(2), 107–114.

    Article  CAS  Google Scholar 

  • Haelterman, N. A., Yoon, W. H., Sandoval, H., Jaiswal, M., Shulman, J. M., & Bellen, H. J. (2014, May 5). A mitocentric view of Parkinson’s disease. Annual Review of Neuroscience, 37, 137–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hales, K. G., Korey, C. A., Larracuente, A. M., & Roberts, D. M. (2015, November). Genetics on the fly: A primer on the drosophila model system. Genetics, 201(3), 815–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzen, E. L., Arzimanoglou, A., Brashear, A., Clapcote, S. J., Gurrieri, F., Goldstein, D. B., et al. (2014, May). Distinct neurological disorders with ATP1A3 mutations. Lancet Neurology, 13(5), 503–514.

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg, M., & Böhl, K. (1979, February 1). Isolation of anatomical brain mutants of drosophila by histological means. Zeitschrift für Naturforschung. Section C, 34(1–2), 143–147.

    Article  Google Scholar 

  • Hewitt, V. L., & Whitworth, A. J. (2017). Mechanisms of Parkinson’s disease: Lessons from Drosophila. Current Topics in Developmental Biology, 121, 173–200.

    Article  CAS  PubMed  Google Scholar 

  • Homyk, T., & Sheppard, D. E. (1977, September). Behavioral mutants of Drosophila melanogaster. I. Isolation and mapping of mutations which decrease flight ability. Genetics, 87(1), 95–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, C., Duit, S., Jalonen, P., Out, R., Scheer, L., Sorrentino, V., et al. (2010, June 25). The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2. The Journal of Biological Chemistry, 285(26), 19720–19726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta, Y., & Benzer, S. (1969, April 26). Abnormal electroretinograms in visual mutants of Drosophila. Nature, 222(5191), 354–356.

    Article  CAS  PubMed  Google Scholar 

  • Hotta, Y., & Benzer, S. (1970, November). Genetic dissection of the Drosophila nervous system by means of mosaics. Proceedings of the National Academy of Sciences of the United States of America, 67(3), 1156–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta, Y., & Benzer, S. (1972, December 29). Mapping of behaviour in Drosophila mosaics. Nature, 240(5383), 527–535.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Xie, J., & Wang, T. (2015, December 14). A fluorescence-based genetic screen to study retinal degeneration in Drosophila. PLoS ONE, 10(12), e0144925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain, R., Zubair, H., Pursell, S., & Shahab, M. (2018). Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sciences, 8(9).

    Google Scholar 

  • Jaiswal, M., Sandoval, H., Zhang, K., Bayat, V., & Bellen, H. J. (2012, September 4). Probing mechanisms that underlie human neurodegenerative diseases in Drosophila. Annual Review of Genetics, 46, 371–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal, M., Haelterman, N. A., Sandoval, H., Xiong, B., Donti, T., Kalsotra, A., et al. (2015, July 15). Impaired mitochondrial energy production causes light-induced photoreceptor degeneration independent of oxidative stress. PLoS Biology, 13(7), e1002197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakobsdottir, J., van der Lee, S. J., Bis, J. C., Chouraki, V., Li-Kroeger, D., Yamamoto, S., et al. (2016, October 20). Rare functional variant in TM2D3 is associated with late-onset Alzheimer’s disease. PLoS Genetics, 12(10), e1006327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jansen, I. E., Ye, H., Heetveld, S., Lechler, M. C., Michels, H., Seinstra, R. I., et al. (2017, January 30). Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biology, 18(1), 22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jellinger, K. A. (2010). Basic mechanisms of neurodegeneration: A critical update. Journal of Cellular and Molecular Medicine, 14(3), 457–487.

    Google Scholar 

  • Jeong, S. (2017, September 30). Molecular and cellular basis of neurodegeneration in alzheimer’s disease. Molecules and Cells, 40(9), 613–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Sanchez, M., Lam, W., Hannus, M., Sönnichsen, B., Imarisio, S., Fleming, A., et al. (2015, May). siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nature Chemical Biology, 11(5), 347–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovičić, A., Mertens, J., Boeynaems, S., Bogaert, E., Chai, N., Yamada, S. B., et al. (2015, September). Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nature Neuroscience, 18(9), 1226–1229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juranek, J., Ray, R., Banach, M., & Rai, V. (2015). Receptor for advanced glycation end-products in neurodegenerative diseases. Reviews in the Neurosciences, 26(6), 691–698.

    Article  PubMed  Google Scholar 

  • Karimi-Moghadam, A., Charsouei, S., Bell, B., & Jabalameli, M. R. (2018, August). Parkinson disease from mendelian forms to genetic susceptibility: New molecular insights into the neurodegeneration process. Cellular and Molecular Neurobiology, 38(6), 1153–1178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasture, A. S., Hummel, T., Sucic, S., & Freissmuth, M. (2018, June 16). Big lessons from tiny flies: Drosophila melanogaster as a model to explore dysfunction of dopaminergic and serotonergic neurotransmitter systems. International Journal of Molecular Sciences, 19(6), pii: E1788.

    Article  CAS  Google Scholar 

  • Kazemi-Esfarjani, P., & Benzer, S. (2000, March 10). Genetic suppression of polyglutamine toxicity in Drosophila. Science, 287(5459), 1837–1840.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., Ho, A., & Lee, J. H. (2017, July 23). Autophagy and human neurodegenerative diseases-A fly’s perspective. International Journal of Molecular Sciences, 18(7), pii: E1596.

    Article  CAS  Google Scholar 

  • Kim, K. S., Marcogliese, P. C., Yang, J., Callaghan, S. M., Resende, V., Abdel-Messih, E., et al. (2018, May 29). Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 115(22), E5164–E5173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koon, A. C., & Chan, H. Y. E. (2017, March 21). Drosophila melanogaster as a model organism to study RNA toxicity of repeat expansion-associated neurodegenerative and neuromuscular diseases. Frontiers in Cellular Neuroscience, 11, 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kreiner, G. (2018, December). What have we learned recently from transgenic mouse models about neurodegeneration? The most promising discoveries of this millennium. Pharmacological Reports, 70(6), 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar, D., Hasan, G., Sharma, S., Heisenberg, M., & Benzer, S. (1997, October 1). The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. The Journal of Neuroscience, 17(19), 7425–7432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langellotti, S., Romano, G., Feiguin, F., Baralle, F. E., & Romano, M. (2018, April 13). RhoGAPp190: A potential player in tbph-mediated neurodegeneration in Drosophila. PLoS ONE, 13(4), e0195845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavoy, S., Chittoor-Vinod, V. G., Chow, C. Y., & Martin, I. (2018, June 15). Genetic modifiers of neurodegeneration in a drosophila model of Parkinson’s disease. Genetics, 209(4), 1345–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawal, H. O., Terrell, A., Lam, H. A., Djapri, C., Jang, J., Hadi, R., et al. (2014, February). Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson’s disease and depression. Molecular Psychiatry, 19(2), 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. B., Kim, W., Lee, S., & Chung, J. (2007, June 29). Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochemical and Biophysical Research Communications, 358(2), 534–539.

    Article  CAS  PubMed  Google Scholar 

  • Lehner, B. (2013, March). Genotype to phenotype: Lessons from model organisms for human genetics. Nature Reviews Genetics, 14(3), 168–178.

    Article  CAS  PubMed  Google Scholar 

  • Lerdkrai, C., Asavapanumas, N., Brawek, B., Kovalchuk, Y., Mojtahedi, N., Olmedillas Del Moral, M., et al. (2018, February 6). Intracellular Ca2+ stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 115(6), E1279–E1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lessing, D., & Bonini, N. M. (2009, June). Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nature Reviews Genetics, 10(6), 359–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, S. J., Leng, Z. G., Guo, Y. H., Cai, L., Cai, Y., Li, N., et al. (2015, November 17). Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline. Oncotarget, 6(36), 39329–39341.

    PubMed  PubMed Central  Google Scholar 

  • Lin, C.-H., Lin, H.-I., Chen, M.-L., Lai, T.-T., Cao, L.-P., Farrer, M. J., et al. (2016, May 15). Lovastatin protects neurite degeneration in LRRK2-G2019S parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3β activity. Human Molecular Genetics, 25(10), 1965–1978.

    Article  CAS  PubMed  Google Scholar 

  • Linhart, R., Wong, S. A., Cao, J., Tran, M., Huynh, A., Ardrey, C., et al. (2014, June 11). Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson’s disease mutant of Leucine-Rich Repeat Kinase 2 (LRRK2). Molecular Neurodegeneration, 9, 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, S., & Lu, B. (2010, December 9). Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genetics, 6(12), e1001237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., et al. (2008, February 19). A Drosophila model for LRRK2-linked parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2693–2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Sawada, T., Lee, S., Yu, W., Silverio, G., Alapatt, P., et al. (2012, March 1). Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genetics, 8(3), e1002537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., et al. (2015, January 15). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell, 160(1–2), 177–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., MacKenzie, K. R., Putluri, N., Maletić-Savatić, M., & Bellen, H. J. (2017, November 7). The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metabolism, 26(5), 719–737.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loewen, C. A., & Ganetzky, B. (2018, March 1). Mito-nuclear interactions affecting lifespan and neurodegeneration in a Drosophila model of Leigh syndrome. Genetics, 208(4), 1535–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewen, C., Boekhoff-Falk, G., Ganetzky, B., & Chtarbanova, S. (2018, October 3). A novel mutation in brain tumor causes both neural over-proliferation and neurodegeneration in adult Drosophila. G3 (Bethesda), 8(10), 3331–3346.

    Article  CAS  Google Scholar 

  • Makrythanasis, P., Kato, M., Zaki, M. S., Saitsu, H., Nakamura, K., Santoni, F. A., et al. (2016, April 7). Pathogenic variants in PIGG cause intellectual disability with seizures and hypotonia. American Journal of Human Genetics, 98(4), 615–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallik, M., Catinozzi, M., Hug, C. B., Zhang, L., Wagner, M., Bussmann, J., et al. (2018, November 5). Xrp1 genetically interacts with the ALS-associated FUS orthologue caz and mediates its toxicity. The Journal of Cell Biology, 217(11), 3947–3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manrai, A. K., Funke, B. H., Rehm, H. L., Olesen, M. S., Maron, B. A., Szolovits, P., et al. (2016, August 18). Genetic misdiagnoses and the potential for health disparities. The New England Journal of Medicine, 375(7), 655–665.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzoni, C. (2017, February 8). The LRRK2-macroautophagy axis and its relevance to Parkinson’s disease. Biochemical Society Transactions, 45(1), 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcogliese, P. C., Abuaish, S., Kabbach, G., Abdel-Messih, E., Seang, S., Li, G., et al. (2017, April 1). LRRK2(I2020T) functional genetic interactors that modify eye degeneration and dopaminergic cell loss in Drosophila. Human Molecular Genetics, 26(7), 1247–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcogliese, P. C., Shashi, V., Spillmann, R. C., Stong, N., Rosenfeld, J. A., Koenig, M. K., et al. (2018, August 2). IRF2BPL is associated with neurological phenotypes. American Journal of Human Genetics, 103(2), 245–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín-Aguilar, F., Pavillard, L. E., Giampieri, F., Bullón, P., & Cordero, M. D. (2017, January 29). Adenosine monophosphate (AMP)-activated protein kinase: A new target for nutraceutical compounds. International Journal of Molecular Sciences, 18(2), pii: E288.

    Article  CAS  Google Scholar 

  • Martin, S., Chamberlin, A., Shinde, D. N., Hempel, M., Strom, T. M., Schreiber, A., et al. (2017, December 7). De novo variants in GRIA4 lead to intellectual disability with or without seizures and gait abnormalities. American Journal of Human Genetics, 101(6), 1013–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matta, S., Van Kolen, K., da Cunha, R., van den Bogaart, G., Mandemakers, W., Miskiewicz, K., et al. (2012, September 20). LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron, 75(6), 1008–1021.

    Article  CAS  PubMed  Google Scholar 

  • Matzinger, P. (2002, April 12). The danger model: A renewed sense of self. Science, 296(5566), 301–305.

    Article  CAS  PubMed  Google Scholar 

  • McFerrin, J., Patton, B. L., Sunderhaus, E. R., & Kretzschmar, D. (2017, February 16). NTE/PNPLA6 is expressed in mature Schwann cells and is required for glial ensheathment of Remak fibers. Glia, 65(5), 804–816.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGurk, L., Berson, A., & Bonini, N. M. (2015, October). Drosophila as an in vivo model for human neurodegenerative disease. Genetics, 201(2), 377–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros, A. T., Bubacco, L., & Morgan, J. R. (2018, April). Impacts of increased α-synuclein on clathrin-mediated endocytosis at synapses: Implications for neurodegenerative diseases. Neural Regeneration Research, 13(4), 647–648.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meinander, A., Runchel, C., Tenev, T., Chen, L., Kim, C.-H., Ribeiro, P. S., et al. (2012, June 13). Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling. The EMBO Journal, 31(12), 2770–2783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzies, F. M., Fleming, A., Caricasole, A., Bento, C. F., Andrews, S. P., Ashkenazi, A., et al. (2017, March 8). Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron, 93(5), 1015–1034.

    Article  CAS  PubMed  Google Scholar 

  • Michno, K., Knight, D., Campusano, J. M., van de Hoef, D., & Boulianne, G. L. (2009, September 4). Intracellular calcium deficits in Drosophila cholinergic neurons expressing wild type or FAD-mutant presenilin. PLoS ONE, 4(9), e6904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Migheli, R., Del Giudice, M. G., Spissu, Y., Sanna, G., Xiong, Y., Dawson, T. M., et al. (2013, October 22). LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization. PLoS ONE, 8(10), e77198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min, K. T., & Benzer, S. (1997, November 1). Spongecake and eggroll: Two hereditary diseases in Drosophila resemble patterns of human brain degeneration. Current Biology, 7(11), 885–888.

    Article  CAS  PubMed  Google Scholar 

  • Min, K. T., & Benzer, S. (1999, June 18). Preventing neurodegeneration in the Drosophila mutant bubblegum. Science, 284(5422), 1985–1988.

    Article  CAS  PubMed  Google Scholar 

  • Mizielinska, S., Grönke, S., Niccoli, T., Ridler, C. E., Clayton, E. L., Devoy, A., et al. (2014, September 5). C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science, 345(6201), 1192–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molster, C. M., Bowman, F. L., Bilkey, G. A., Cho, A. S., Burns, B. L., Nowak, K. J., et al. (2018, September 4). The evolution of public health genomics: Exploring its past, present, and future. Frontiers in Public Health, 6, 247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montaner, A., da Silva Santana, T. T., Schroeder, T., Einiker-Lamas, M., Girardini, J., Costa, M. R., et al. (2018, January 11). Specific phospholipids regulate the acquisition of neuronal and astroglial identities in post-mitotic cells. Scientific Reports, 8(1), 460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morimoto, R. I. (2008, June 1). Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes & Development, 22(11), 1427–1438.

    Article  CAS  Google Scholar 

  • Moser, H. W., Mahmood, A., & Raymond, G. V. (2007, March). X-linked adrenoleukodystrophy. Nature Clinical Practice Neurology, 3(3), 140–151.

    Article  PubMed  Google Scholar 

  • Moskowitz, A. M., Belnap, N., Siniard, A. L., Szelinger, S., Claasen, A. M., Richholt, R. F., et al. (2016, September). A de novo missense mutation in ZMYND11 is associated with global developmental delay, seizures, and hypotonia. Molecular Case Studies, 2(5), a000851.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muhammad, A., Flores, I., Zhang, H., Yu, R., Staniszewski, A., Planel, E., et al. (2008, May 20). Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7327–7332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, U. C., Deller, T., & Korte, M. (2017, March 31). Not just amyloid: Physiological functions of the amyloid precursor protein family. Nature Reviews Neuroscience, 18(5), 281–298.

    Article  PubMed  CAS  Google Scholar 

  • Musiek, E. S. (2015, February 27). Circadian clock disruption in neurodegenerative diseases: Cause and effect? Frontiers in Pharmacology, 6, 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutsuddi, M., & Nambu, J. R. (1998, November 5). Neural disease: Drosophila degenerates for a good cause. Current Biology, 8(22), R809–R811.

    Article  CAS  PubMed  Google Scholar 

  • Nagoshi, E. (2018, October 26). Drosophila models of sporadic parkinson’s disease. International Journal of Molecular Sciences, 19(11), pii: E3343.

    Article  CAS  Google Scholar 

  • Nandan, J., & Nagarkar-Jaiswal, S. (2019). Methods for creating fly models to understand the molecular mechanism of neurological diseases.

    Google Scholar 

  • Narain, Y., Yip, A., Murphy, T., Brayne, C., Easton, D., Evans, J. G., et al. (2000, September). The ACE gene and Alzheimer’s disease susceptibility. Journal of Medical Genetics, 37(9), 695–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neukomm, L. J., Burdett, T. C., Gonzalez, M. A., Züchner, S., & Freeman, M. R. (2014, July 8). Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9965–9970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M., Wong, Y. C., Ysselstein, D., Severino, A., & Krainc, D. (2018, November 30). Synaptic, mitochondrial, and lysosomal dysfunction in parkinson’s disease. Trends in Neurosciences, 42, 140–149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishimura, A. L., Mitne-Neto, M., Silva, H. C. A., Richieri-Costa, A., Middleton, S., Cascio, D., et al. (2004, November). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. American Journal of Human Genetics, 75(5), 822–831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obulesu, M., & Lakshmi, M. J. (2014, December). Apoptosis in Alzheimer’s disease: An understanding of the physiology, pathology and therapeutic avenues. Neurochemical Research, 39(12), 2301–2312.

    Article  CAS  PubMed  Google Scholar 

  • Ohta, E., Nihira, T., Uchino, A., Imaizumi, Y., Okada, Y., Akamatsu, W., et al. (2015, September 1). I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway. Human Molecular Genetics, 24(17), 4879–4900.

    Article  CAS  PubMed  Google Scholar 

  • Ordonez, D. G., Lee, M. K., & Feany, M. B. (2018, January 3). α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron, 97(1), 108–124.e6.

    Article  PubMed  CAS  Google Scholar 

  • Oriel, C., & Lasko, P. (2018, July 13). Recent developments in using drosophila as a model for human genetic disease. International Journal of Molecular Sciences, 19(7), pii: E2041.

    Article  CAS  Google Scholar 

  • Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., et al. (2007, July 27). Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science, 317(5837), 516–519.

    Article  CAS  PubMed  Google Scholar 

  • Palladino, M. J., Hadley, T. J., & Ganetzky, B. (2002, July). Temperature-sensitive paralytic mutants are enriched for those causing neurodegeneration in Drosophila. Genetics, 161(3), 1197–1208.

    PubMed  PubMed Central  Google Scholar 

  • Palladino, M. J., Bower, J. E., Kreber, R., & Ganetzky, B. (2003, February 15). Neural dysfunction and neurodegeneration in Drosophila Na+/K+ ATPase alpha subunit mutants. The Journal of Neuroscience, 23(4), 1276–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, P.-Y., Li, X., Wang, J., Powell, J., Wang, Q., Zhang, Y., et al. (2017, November 22). Parkinson’s disease-associated LRRK2 hyperactive kinase mutant disrupts synaptic vesicle trafficking in ventral midbrain neurons. The Journal of Neuroscience, 37(47), 11366–11376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, S. Y.-Y., Teo, K.-C., Hsu, J. S., Chang, R. S.-K., Li, M., Sham, P.-C., et al. (2017, October 6). The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: A review. Translational Neurodegeneration, 6, 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J., Lee, S. B., Lee, S., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441(7097), 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  • Park, J., Al-Ramahi, I., Tan, Q., Mollema, N., Diaz-Garcia, J. R., Gallego-Flores, T., et al. (2013, June 20). RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature, 498(7454), 325–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlidis, P., Ramaswami, M., & Tanouye, M. A. (1994, October 7). The Drosophila easily shocked gene: A mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell, 79(1), 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, A. J., Rimkus, S. A., & Wassarman, D. A. (2012, March 13). ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109(11), E656–E664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., et al. (2017, March 23). Parkinson disease. Nature Reviews Disease Primers, 3, 17013.

    Article  PubMed  Google Scholar 

  • Popugaeva, E., Pchitskaya, E., & Bezprozvanny, I. (2017, February 19). Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease – A therapeutic opportunity? Biochemical and Biophysical Research Communications, 483(4), 998–1004.

    Article  CAS  PubMed  Google Scholar 

  • Procaccini, C., Santopaolo, M., Faicchia, D., Colamatteo, A., Formisano, L., de Candia, P., et al. (2016, June 7). Role of metabolism in neurodegenerative disorders. Metabolism, Clinical and Experimental, 65(9), 1376–1390.

    Article  CAS  Google Scholar 

  • Qurashi, A., Liu, H., Ray, L., Nelson, D. L., Duan, R., & Jin, P. (2012, May 1). Chemical screen reveals small molecules suppressing fragile X premutation rCGG repeat-mediated neurodegeneration in Drosophila. Human Molecular Genetics, 21(9), 2068–2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran, L., Schneider, A., Schlechtingen, G., Weidlich, S., Ries, J., Braxmeier, T., et al. (2008, April 25). Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting. Science, 320(5875), 520–523.

    Article  CAS  PubMed  Google Scholar 

  • Rezával, C., Berni, J., Gorostiza, E. A., Werbajh, S., Fagilde, M. M., Fernández, M. P., et al. (2008, October 8). A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS ONE, 3(10), e3332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015, May). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritson, G. P., Custer, S. K., Freibaum, B. D., Guinto, J. B., Geffel, D., Moore, J., et al. (2010, June 2). TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. The Journal of Neuroscience, 30(22), 7729–7739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo, W. B., Phillips, M. W., Dammann, A. L., Leshner, R. T., Jennings, S. S., Avigan, J., et al. (1987, March). Adrenoleukodystrophy: Dietary oleic acid lowers hexacosanoate levels. Annals of Neurology, 21(3), 232–239.

    Article  CAS  PubMed  Google Scholar 

  • Roland, B. P., Zeccola, A. M., Larsen, S. B., Amrich, C. G., Talsma, A. D., Stuchul, K. A., et al. (2016, March 31). Structural and genetic studies demonstrate neurologic dysfunction in triosephosphate isomerase deficiency is associated with impaired synaptic vesicle dynamics. PLoS Genetics, 12(3), e1005941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rørth, P. (1996, October 29). A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 93(22), 12418–12422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Royden, C. S., Pirrotta, V., & Jan, L. Y. (1987, October 23). The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell, 51(2), 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Ruan, K., Zhu, Y., Li, C., Brazill, J. M., & Zhai, R. G. (2015, November 30). Alternative splicing of Drosophila Nmnat functions as a switch to enhance neuroprotection under stress. Nature Communications, 6, 10057.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., Jiménez-Delgado, S., Caig, C., Mora, S., et al. (2012, May). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Molecular Medicine, 4(5), 380–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandoval, H., Yao, C. -K., Chen, K., Jaiswal, M., Donti, T., Lin, Y. Q., et al. (2014, October 14). Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production. eLife, 3.

    Google Scholar 

  • Şentürk, M., & Bellen, H. J. (2018). Genetic strategies to tackle neurological diseases in fruit flies. Current Opinion in Neurobiology, 50, 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Şentürk, M., Lin, G., Zuo, Z., et al. (2019). Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nature Cell Biology, 21(3), 384–396. https://doi.org/10.1038/s41556-019-0281-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahidullah, M., Le Marchand, S. J., Fei, H., Zhang, J., Pandey, U. B., Dalva, M. B., et al. (2013, December 11). Defects in synapse structure and function precede motor neuron degeneration in Drosophila models of FUS-related ALS. The Journal of Neuroscience, 33(50), 19590–19598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih, R.-H., Wang, C.-Y., & Yang, C.-M. (2015, December 18). NF-kappaB signaling pathways in neurological inflammation: A mini review. Frontiers in Molecular Neuroscience, 8, 77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shulman, J. M. (2015, December). Drosophila and experimental neurology in the post-genomic era. Experimental Neurology, 274(Pt A), 4–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqi, O., & Benzer, S. (1976, September). Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 73(9), 3253–3257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal, N., & Jaiswal, M. (2018, July). Pathways to neurodegeneration: Lessons learnt from unbiased genetic screens in Drosophila. Journal of Genetics, 97(3), 773–781.

    Article  PubMed  Google Scholar 

  • Sivachenko, A., Gordon, H. B., Kimball, S. S., Gavin, E. J., Bonkowsky, J. L., & Letsou, A. (2016, April). Neurodegeneration in a Drosophila model of adrenoleukodystrophy: The roles of the Bubblegum and Double bubble acyl-CoA synthetases. Disease Models & Mechanisms, 9(4), 377–387.

    Article  CAS  Google Scholar 

  • Sreedharan, J., Neukomm, L. J., Brown, R. H., & Freeman, M. R. (2015, August 17). Age-dependent TDP-43-mediated motor neuron degeneration requires GSK3, hat-trick, and xmas-2. Current Biology, 25(16), 2130–2136.

    Article  CAS  PubMed  Google Scholar 

  • St Johnston, D. (2002, March). The art and design of genetic screens: Drosophila melanogaster. Nature Reviews Genetics, 3(3), 176–188.

    Article  CAS  PubMed  Google Scholar 

  • Stepto, A., Gallo, J.-M., Shaw, C. E., & Hirth, F. (2014, March). Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathologica, 127(3), 377–389.

    Article  CAS  PubMed  Google Scholar 

  • Stoven, S., Silverman, N., Junell, A., Hedengren-Olcott, M., Erturk, D., Engstrom, Y., et al. (2003, May 13). Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5991–5996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowers, R. S., Megeath, L. J., Górska-Andrzejak, J., Meinertzhagen, I. A., & Schwarz, T. L. (2002, December 19). Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron, 36(6), 1063–1077.

    Article  CAS  PubMed  Google Scholar 

  • Straub, J., Konrad, E. D. H., Grüner, J., Toutain, A., Bok, L. A., Cho, M. T., et al. (2018, January 4). Missense variants in RHOBTB2 cause a developmental and epileptic encephalopathy in humans, and altered levels cause neurological defects in drosophila. American Journal of Human Genetics, 102(1), 44–57.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, D. T., Grigliatti, T., & Williamson, R. (1971, May). Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para-ts) causing reversible adult paralysis. Proceedings of the National Academy of Sciences of the United States of America, 68(5), 890–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi, M., Lone, S. R., Liu, S., Liu, Q., Zhang, J., Spira, A. P., et al. (2015, March 16). Sleep interacts with aβ to modulate intrinsic neuronal excitability. Current Biology, 25(6), 702–712.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, J. P., Brown, R. H., & Cleveland, D. W. (2016, November 10). Decoding ALS: From genes to mechanism. Nature, 539(7628), 197–206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teyssou, E., Chartier, L., Amador, M.-D.-M., Lam, R., Lautrette, G., Nicol, M., et al. (2017, June 24). Novel UBQLN2 mutations linked to amyotrophic lateral sclerosis and atypical hereditary spastic paraplegia phenotype through defective HSP70-mediated proteolysis. Neurobiology of Aging, 58, 239.e11–239.e20.

    Article  CAS  Google Scholar 

  • Thiffault, I., Rioux, M. F., Tetreault, M., Jarry, J., Loiselle, L., Poirier, J., et al. (2006, September). A new autosomal recessive spastic ataxia associated with frequent white matter changes maps to 2q33-34. Brain, 129(Pt 9), 2332–2340.

    Article  CAS  PubMed  Google Scholar 

  • Thorburn, D. R., Rahman, J., & Rahman, S. (1993). Mitochondrial DNA-associated leigh syndrome and NARP. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, H. C. Mefford, et al. (Eds.), GeneReviews(®). Seattle: University of Washington.

    Google Scholar 

  • Tian, X., Gala, U., Zhang, Y., Shang, W., Nagarkar Jaiswal, S., di Ronza, A., et al. (2015, March 26). A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis. PLoS Biology, 13(3), e1002103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai, J. W., Kostyleva, R., Chen, P.-L., et al. (2019). Transcriptional feedback links lipid synthesis to synaptic vesicle pools in drosophila photoreceptors. Neuron, 101(4), 721–737. e4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tschäpe, J.-A., Hammerschmied, C., Mühlig-Versen, M., Athenstaedt, K., Daum, G., & Kretzschmar, D. (2002, December 2). The neurodegeneration mutant löchrig interferes with cholesterol homeostasis and Appl processing. The EMBO Journal, 21(23), 6367–6376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Damme, P., Robberecht, W., & Van Den Bosch, L. (2017, May 1). Modelling amyotrophic lateral sclerosis: Progress and possibilities. Disease Models & Mechanisms, 10(5), 537–549.

    Article  CAS  Google Scholar 

  • Van de Hoef, D. L., Hughes, J., Livne-Bar, I., Garza, D., Konsolaki, M., & Boulianne, G. L. (2009, April). Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis, 47(4), 246–260.

    Article  PubMed  CAS  Google Scholar 

  • Venken, K. J. T., Simpson, J. H., & Bellen, H. J. (2011, October 20). Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron, 72(2), 202–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky, A., Zorec, R., Rodriguez, J. J., & Parpura, V. (2017). Neuroglia: functional paralysis and reactivity in alzheimer’s disease and other neurodegenerative pathologies. Advances in Neurobiology, 15, 427–449.

    Article  PubMed  Google Scholar 

  • Vos, M., Esposito, G., Edirisinghe, J. N., Vilain, S., Haddad, D. M., Slabbaert, J. R., et al. (2012, June 8). Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science, 336(6086), 1306–1310.

    Article  CAS  PubMed  Google Scholar 

  • VoSSfeldt, H., Butzlaff, M., PrüSSing, K., Ní Chárthaigh, R.-A., Karsten, P., Lankes, A., et al. (2012, November 5). Large-scale screen for modifiers of ataxin-3-derived polyglutamine-induced toxicity in Drosophila. PLoS ONE, 7(11), e47452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, A., Alhaddad, B., Ahting, U., Prokisch, H., Rodenburg, R., Mayatepek, E., et al. (2017, June). Childhood-onset Leigh syndrome transforming into an episodic weakness phenotype with axonal neuropathy caused by MT-ATP6 mutations. European Journal of Paediatric Neurology, 21, e128–e129.

    Article  Google Scholar 

  • Wan, L., Xu, K., Chen, Z., Tang, B., & Jiang, H. (2018, September 19). Roles of post-translational modifications in Spinocerebellar Ataxias. Frontiers in Cellular Neuroscience, 12, 290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, S., Tan, K. L., Agosto, M. A., Xiong, B., Yamamoto, S., Sandoval, H., et al. (2014a, April 29). The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration. PLoS Biology, 12(4), e1001847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, X., Wang, Z., Chen, Y., Huang, X., Hu, Y., Zhang, R., et al. (2014b, May 15). FoxO mediates APP-induced AICD-dependent cell death. Cell Death & Disease, 5, e1233.

    Article  CAS  Google Scholar 

  • Wang, Y. A., Kammenga, J. E., & Harvey, S. C. (2017, May 25). Genetic variation in neurodegenerative diseases and its accessibility in the model organism Caenorhabditis elegans. Human Genomics, 11(1), 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wangler, M. F., Hu, Y., & Shulman, J. M. (2017, February 1). Drosophila and genome-wide association studies: A review and resource for the functional dissection of human complex traits. Disease Models & Mechanisms, 10(2), 77–88.

    Article  CAS  Google Scholar 

  • Whitworth, A. J. (2011). Drosophila models of Parkinson’s disease. Advances in Genetics, 73, 1–50.

    Article  CAS  PubMed  Google Scholar 

  • Wiesinger, C., Eichler, F. S., & Berger, J. (2015, May 2). The genetic landscape of X-linked adrenoleukodystrophy: Inheritance, mutations, modifier genes, and diagnosis. The Application of Clinical Genetics, 8, 109–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, E. T., Chen, X., & Moore, D. J. (2017). VPS35, the retromer complex and parkinson’s disease. Journal of Parkinson’s Disease, 7(2), 219–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt, S. N. (2014, December). Lipid disequilibrium in biological membranes, a possible pathway to neurodegeneration. Communicative & Integrative Biology, 7(6), e993266.

    Article  Google Scholar 

  • Wu, C. F., Ganetzky, B., Jan, L. Y., Jan, Y. N., & Benzer, S. (1978 Aug). A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proceedings of the National Academy of Sciences of the United States of America, 75(8), 4047–4051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, Y., & Yu, J. (2018, April 9). Modeling parkinson’s disease in drosophila: What have we learned for dominant traits? Frontiers in Neurology, 9, 228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong, B., Bayat, V., Jaiswal, M., Zhang, K., Sandoval, H., Charng, W.-L., et al. (2012, December 4). Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biology, 10(12), e1001438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., Tito, A. J., Rui, Y.-N., & Zhang, S. (2015, December). Studying polyglutamine diseases in Drosophila. Experimental Neurology, 274(Pt A), 25–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, S., Jaiswal, M., Charng, W.-L., Gambin, T., Karaca, E., Mirzaa, G., et al. (2014, September 25). A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell, 159(1), 200–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. M., Gupta, S. K., Kim, K. J., Powers, B. E., Cerqueira, A., Wainger, B. J., et al. (2013, June 6). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell, 12(6), 713–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, W. H., Sandoval, H., Nagarkar-Jaiswal, S., Jaiswal, M., Yamamoto, S., Haelterman, N. A., et al. (2017, January 4). Loss of nardilysin, a mitochondrial co-chaperone for α-ketoglutarate dehydrogenase, promotes mTORC1 activation and neurodegeneration. Neuron, 93(1), 115–131.

    Article  CAS  PubMed  Google Scholar 

  • Zelcer, N., Hong, C., Boyadjian, R., & Tontonoz, P. (2009, July 3). LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science, 325(5936), 100–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, R. G., Cao, Y., Hiesinger, P. R., Zhou, Y., Mehta, S. Q., Schulze, K. L., et al. (2006, November). Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. PLoS Biology, 4(12), e416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhai, R. G., Zhang, F., Hiesinger, P. R., Cao, Y., Haueter, C. M., & Bellen, H. J. (2008, April 17). NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature, 452(7189), 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan, L., Xie, Q., & Tibbetts, R. S. (2015, February 1). Opposing roles of p38 and JNK in a Drosophila model of TDP-43 proteinopathy reveal oxidative stress and innate immunity as pathogenic components of neurodegeneration. Human Molecular Genetics, 24(3), 757–772.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K., Li, Z., Jaiswal, M., Bayat, V., Xiong, B., Sandoval, H., et al. (2013, March 18). The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. The Journal of Cell Biology, 200(6), 807–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, K., Donnelly, C. J., Haeusler, A. R., Grima, J. C., Machamer, J. B., Steinwald, P., et al. (2015, September 3). The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 525(7567), 56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, K., Coyne, A. N., & Lloyd, T. E. (2018, August 15). Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Research, 1693(Pt A), 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Zhao, J., Zhang, T., & Guo, C. (2016, April). Increased apoptosis in the platelets of patients with Alzheimer’s disease and amnestic mild cognitive impairment. Clinical Neurology and Neurosurgery, 143, 46–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Neha Singhal, Nele Haelterman, and Megan Campbell for critical comments. MJ is supported by intramural funding from TIFR and Ramalingaswami Fellowship, DBT, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandya, A.S., Cheramangalam, R.N., Jaiswal, M. (2019). Understanding Neurodegeneration and Neuroprotection Through Genetic Screens in Drosophila. In: Mutsuddi, M., Mukherjee, A. (eds) Insights into Human Neurodegeneration: Lessons Learnt from Drosophila. Springer, Singapore. https://doi.org/10.1007/978-981-13-2218-1_3

Download citation

Publish with us

Policies and ethics