Skip to main content

Robot Manipulator Control Using Backstepping with Lagrange’s Extrapolation and PI Compensator

  • Chapter
  • First Online:
New Developments and Advances in Robot Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 175))

Abstract

A robust nonlinear backstepping technique with Lagrange’s extrapolation and PI compensator is proposed in this chapter for high accuracy trajectory tracking of robot manipulators with uncertain dynamics and unexpeted disturbances. The proposed controller is synthesized by using Lagrangian extrapolation method with PI compensator to estimate the uncertainties and disturbances and to deal with the effect of hard nonlinearities caused by the estimation error while nonlinear backstepping technique is used to ensure good tracking. The stability analysis is accomplished recursively using appropriate Lyapunov functions candidate. As a result, the proposed control technique shows better performances via experimental results on a 7-DOF robot arm in comparison with the classical backstepping and sliding mode control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hadithi, B. M., Matía, F., & Jiménez, A. (2007). Fuzzy controller for robot manipulators (pp. 688–697). Berlin/Heidelberg: Springer.

    MATH  Google Scholar 

  • Chen, S.-H., & Fu, L.-C. (2015). Observer-based backstepping control of a 6-DOF parallel hydraulic manipulator. Control Engineering Practice, 36, 100–112.

    Article  Google Scholar 

  • Choi, J. Y., & Farrell, J. (2000). Observer-based backstepping control using online approximation. American Control Conference, 5, 3646–3650.

    Google Scholar 

  • Fierro, R., & Lewis, F. L. (1998). Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on Neural Networks, 9(4), 589–600.

    Article  Google Scholar 

  • Hu, Q., Xu, L., & Zhang, A. (2012). Adaptive backstepping trajectory tracking control of robot manipulator. Journal of the Franklin Institute, 349(3), 1087–1105.

    Article  MathSciNet  Google Scholar 

  • Jagannathan, S., & Lewis, F. (1998). Robust backstepping control of robotic systems using neural networks. Journal of Intelligent and Robotic Systems, 23, 105–128.

    Article  Google Scholar 

  • Kali, Y., Saad, M., Benjelloun, K., & Fatemi, A. (2017). Discrete-time second order sliding mode with time delay control for uncertain robot manipulators. Robotics and Autonomous Systems, 94, 53–60.

    Article  Google Scholar 

  • Khalil, H. (1992). Nonlinear systems. New York: Macmillan Publishing Company.

    MATH  Google Scholar 

  • Kokotovic, P., Krstic, M., & Kanellakopoulos, I. (1995). Nonlinear and adaptive control design. New York: Wiley.

    MATH  Google Scholar 

  • Lewis, F., Abdallah, C., & Dawson, D. (1993). Control of robot manipulators. New York: Macmillan Publishing Company.

    Google Scholar 

  • Liu, J., & Wang, X. (2012). Advanced sliding mode control for mechanical systems. Berlin/Heidelberg: Springer.

    MATH  Google Scholar 

  • Shieh, H.-J., & Hsu, C.-H. (2008). An adaptive approximator-based backstepping control approach for piezoactuator-driven stages. IEEE Transactions On Industrial Electronics, 55, 1729–1738.

    Article  Google Scholar 

  • Skjetne, R., & Fossen, T. (2004). On integral control in backstepping: Analysis of different techniques. In American Control Conference, Boston, Massachusetts.

    Google Scholar 

  • Slotine, J., & Li, W. (1991). Applied nonlinear control. Taipei: Prentice-Hall International.

    MATH  Google Scholar 

  • Spong, M., Hutchinson, S., & Vidyasagar, M. (2005). Robot modeling and control. Wiley.

    Google Scholar 

  • Su, C.-Y., Li, G., Li, Z., & Su, H. (2015). Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs. IEEE Transactions on Fuzzy Systems, 23, 555–566.

    Article  Google Scholar 

  • Tan, Y., Chang, J., Tan, H., & Jun, H. (2000). Integral backstepping control and experimental implementation for motion system. In IEEE International Conference on Control Applications, Anchorage, AK.

    Google Scholar 

  • Toumi, K., & Ito, O. (1990). A time delay controller for systems with unknown dynamics. ASME Journal of Dynamic System, Measurement and Control, 112, 133–141.

    Article  Google Scholar 

  • Utkin, V. (1992). Sliding mode in control and optimization. Berlin: Springer.

    Book  Google Scholar 

  • Utkin, V., Guldner, J., & Shi, J. (1999). Sliding mode control in electromechanical systems (2nd ed.). Boca Raton, London.

    Google Scholar 

  • Weisheng, C., Ge, S., Jian, W., & Maoguo, G. (2015). Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Transactions on Neural Networks and Learning Systems, 26, 1842–1854.

    Article  MathSciNet  Google Scholar 

  • Wilson, J., Charest, M., & Dubay, R. (2016). Non-linear model predictive control schemes with application on a 2 link vertical robot manipulator. Robotics and Computer-Integrated Manufacturing, 41, 23–30.

    Article  Google Scholar 

  • Yaramasu, V., & Wu, B. (2014). Model predictive decoupled active and reactive power control for high-power grid-connected four-level diode-clamped inverters. IEEE Transactions on Industrial Electronics, 61(7), 3407–3416.

    Article  Google Scholar 

  • Yoo, B. K., & Ham, W. C. (2000). Adaptive control of robot manipulator using fuzzy compensator. IEEE Transactions on Fuzzy Systems, 8, 186–199.

    Article  Google Scholar 

  • Zhou, J., & Er, M. J. (2007). Adaptive output control of a class of uncertain chaotic systems. Systems and Control Letters, 56(6), 452–460.

    Article  MathSciNet  Google Scholar 

  • Zhou, J., & Wen, C. (2008). Adaptive backstepping control of uncertain systems. Berlin: Springer.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Nabil Derbel (University of Sfax, Tunisia), Jawhar Ghommam (University of Tunis, Tunisia) and Quanmin Zhu (University of the West of England) for the opportunity to contribute to the New developments and advances in the field of Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Kali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kali, Y., Saad, M., Kenné, JP., Benjelloun, K. (2019). Robot Manipulator Control Using Backstepping with Lagrange’s Extrapolation and PI Compensator. In: Derbel, N., Ghommam, J., Zhu, Q. (eds) New Developments and Advances in Robot Control. Studies in Systems, Decision and Control, vol 175. Springer, Singapore. https://doi.org/10.1007/978-981-13-2212-9_6

Download citation

Publish with us

Policies and ethics