Skip to main content

The PA Tag: A Versatile Peptide Tagging System in the Era of Integrative Structural Biology

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1105))

Abstract

We have recently developed a novel protein tagging system based on the high affinity interaction between an antibody NZ-1 and its antigen PA peptide, a dodecapeptide that forms a β-turn in the binding pocket of NZ-1. This unique conformation allows for the PA peptide to be inserted into turn-forming loops within a folded protein domain and the system has been variously used in general applications including protein purification, Western blotting and flow cytometry, or in more specialized applications such as reporting protein conformational change, and identifying subunits of macromolecular complexes with electron microscopy. Thus the small and “portable” nature of the PA tag system offers a versatile and powerful tool that can be implemented in various aspects of integrative structural biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arimori T, Kitago Y, Umitsu M et al (2017) Fv-clasp: an artificially designed small antibody fragment with improved production compatibility, stability, and crystallizability. Structure 25:1611–1622

    Article  CAS  Google Scholar 

  • Boisset N, Radermacher M, Grassucci R et al (1993) Three-dimensional immunoelectron microscopy of scorpion hemocyanin labeled with a monoclonal fab fragment. J Struct Biol 111:234–244

    Article  CAS  Google Scholar 

  • Boisset N, Penczek P, Taveau JC et al (1995) Three-dimensional reconstruction of androctonus australis hemocyanin labeled with a monoclonal fab fragment. J Struct Biol 115:16–29

    Article  CAS  Google Scholar 

  • Bonasio R, Carman CV, Kim E et al (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc Natl Acad Sci U S A 104:14753–14758

    Article  CAS  Google Scholar 

  • Brown Z, Arimori T, Iwasaki K et al (2017) Development of a new protein labeling system to map subunits and domains of macromolecular complexes for electron microscopy. J Struct Biol 201:247–251

    Article  Google Scholar 

  • Buchel C, Morris E, Orlova E et al (2001) Localisation of the PsbH subunit in photosystem II: a new approach using labelling of His-tags with a Ni(2+)-NTA gold cluster and single particle analysis. J Mol Biol 312:371–379

    Article  CAS  Google Scholar 

  • Bui KH, Sakakibara H, Movassagh T et al (2008) Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J Cell Biol 183:923–932

    Article  CAS  Google Scholar 

  • Calleja V, Ameer-Beg SM, Vojnovic B et al (2003) Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem J 372:33–40

    Article  CAS  Google Scholar 

  • Chen J, Sawyer N, Regan L (2013) Protein-protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci 22:510–515

    Article  CAS  Google Scholar 

  • Ciferri C, Lander GC, Maiolica A et al (2012) Molecular architecture of human polycomb repressive complex 2. elife 1:e00005

    Article  Google Scholar 

  • Ciferri C, Lander GC, Nogales E (2015) Protein domain mapping by internal labeling and single particle electron microscopy. J Struct Biol 192:159–162

    Article  CAS  Google Scholar 

  • Dennison SM, Anasti KM, Jaeger FH et al (2014) Vaccine-induced HIV-1 envelope gp120 constant region 1-specific antibodies expose a CD4-inducible epitope and block the interaction of HIV-1 gp140 with galactosylceramide. J Virol 88:9406–9417

    Article  Google Scholar 

  • Dinculescu A, McDowell JH, Amici SA et al (2002) Insertional mutagenesis and immunochemical analysis of visual arrestin interaction with rhodopsin. J Biol Chem 277:11703–11708

    Article  CAS  Google Scholar 

  • Dyson HJ, Lerner RA, Wright PE (1988) The physical basis for induction of protein-reactive antipeptide antibodies. Annu Rev Biophys Biophys Chem 17:305–324

    Article  CAS  Google Scholar 

  • Evan GI, Lewis GK, Ramsay GB, J. M. (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616

    Article  CAS  Google Scholar 

  • Facey SJ, Kuhn A (2003) The sensor protein KdpD inserts into the Escherichia coli membrane independent of the sec translocase and YidC. Eur J Biochem 270:1724–1734

    Article  CAS  Google Scholar 

  • Field J, Nikawa J, Broek D et al (1988) Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol 8: 2159–2165

    Article  CAS  Google Scholar 

  • Flemming D, Thierbach K, Stelter P et al (2010) Precise mapping of subunits in multiprotein complexes by a versatile electron microscopy label. Nat Struct Mol Biol 17:775–778

    Article  CAS  Google Scholar 

  • Forsberg BO, Aibara S, Kimanius D et al (2017) Cryo-EM reconstruction of the chlororibosome to 3.2 Å resolution within 24 h. IUCr J 4:723–727

    Article  CAS  Google Scholar 

  • Fujii Y, Kaneko M, Neyazaki M et al (2014) PA tag: a versatile protein tagging system using a super high affinity antibody against a dodecapeptide derived from human podoplanin. Protein Expres Purif 95:240–247

    Article  CAS  Google Scholar 

  • Fujii Y, Matsunaga Y, Arimori T, et al. (2016a) Tailored placement of a turn-forming PA tag into the structured domain of a protein to probe its conformational state. J. Cell Sci., 1512-1522

    Article  CAS  Google Scholar 

  • Fujii Y, Kaneko MK, Kato Y (2016b) MAP tag: a novel tagging system for protein purification and detection. Monoclon Antib Immunodiagn Immunother 35:293–299

    Article  CAS  Google Scholar 

  • Fujii Y, Kaneko MK, Ogasawara S et al (2017) Development of RAP tag, a novel tagging system for protein detection and purification. Monoclon Antib Immunodiagn Immunother 36:68–71

    Article  CAS  Google Scholar 

  • Guruprasad K, Rajkumar S (2000) Beta-and gamma-turns in proteins revisited: a new set of amino acid turn-type dependent positional preferences and potentials. J Biosci 25:143–156

    Article  CAS  Google Scholar 

  • Hancock DC, O’Reilly NJ (2005) Synthetic peptides as antigens for antibody production. Methods Mol Biol 295:13–26

    CAS  PubMed  Google Scholar 

  • Heuser T, Raytchev M, Krell J et al (2009) The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187:921–933

    Article  CAS  Google Scholar 

  • Heuser T, Barber CF, Lin J et al (2012) Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proc Natl Acad Sci U S A 109:E2067–E2076

    Article  CAS  Google Scholar 

  • Hirai H, Yasui N, Yamashita K et al (2017) Structural basis for ligand capture and release by the endocytic receptor ApoER2. EMBO Rep 18:982–999

    Article  CAS  Google Scholar 

  • Hopp TP, Prickett KS, Price VL et al (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6:1204–1210

    Article  CAS  Google Scholar 

  • Humphries MJ, Symonds EJ, Mould AP (2003) Mapping functional residues onto integrin crystal structures. Curr Opin Struct Biol 13:236–243

    Article  CAS  Google Scholar 

  • Irannejad R, Tomshine JC, Tomshine JR et al (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–538

    Article  CAS  Google Scholar 

  • Kato Y, Kaneko MK, Kuno A et al (2006) Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 349:1301–1307

    Article  CAS  Google Scholar 

  • Kato K, Nishimasu H, Okudaira S et al (2012) Crystal structure of Enpp1, an extracellular glycoprotein involved in bone mineralization and insulin signaling. Proc Natl Acad Sci U S A 109:16876–16881

    Article  CAS  Google Scholar 

  • Kelly DF, Lake RJ, Middelkoop TC et al (2010) Molecular structure and dimeric organization of the notch extracellular domain as revealed by electron microscopy. PLoS One 5:e10532

    Article  Google Scholar 

  • Kendall RT, Senogles SE (2006) Investigation of the alternatively spliced insert region of the D2L dopamine receptor by epitope substitution. Neurosci Lett 393:155–159

    Article  CAS  Google Scholar 

  • Kitago Y, Nagae M, Nakata Z et al (2015) Structural basis for amyloidogenic peptide recognition by sorLA. Nat Struct Mol Biol 22:199–206

    Article  CAS  Google Scholar 

  • Koide S (2009) Engineering of recombinant crystallization chaperones. Curr Opin Struct Biol 19:449–457

    Article  CAS  Google Scholar 

  • Maina CV, Riggs PD, Grandea AG 3rd et al (1988) An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74:365–373

    Article  CAS  Google Scholar 

  • Matoba K, Mihara E, Tamura-Kawakami K et al (2017) Conformational freedom of the lrp6 ectodomain is regulated by n-glycosylation and the binding of the wnt antagonist dkk1. Cell Rep 18:32–40

    Article  CAS  Google Scholar 

  • Matsunaga Y, Bashiruddin NK, Kitago Y et al (2016) Allosteric inhibition of a semaphorin 4d receptor plexin b1 by a high-affinity macrocyclic peptide. Cell Chem Biol 23:1341–1350

    Article  CAS  Google Scholar 

  • Mercogliano CP, Derosier DJ (2007) Concatenated metallothionein as a clonable gold label for electron microscopy. J Struct Biol 160:70–82

    Article  CAS  Google Scholar 

  • Morita J, Kano K, Kato K et al (2016) Structure and biological function of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase. Sci Rep 6:20995

    Article  CAS  Google Scholar 

  • Morlacchi S, Sciandra F, Bigotti MG et al (2012) Insertion of a myc-tag within alpha-dystroglycan domains improves its biochemical and microscopic detection. BMC Biochem 13:14

    Article  CAS  Google Scholar 

  • Nagae M, Nishikawa K, Yasui N et al (2008) Structure of the F-spondin reeler domain reveals a unique beta-sandwich fold with a deformable disulfide-bonded loop. Acta Crystallogr D Biol Crystallogr 64:1138–1145

    Article  CAS  Google Scholar 

  • Nishimasu H, Okudaira S, Hama K et al (2011) Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat Struct Mol Biol 18:205–212

    Article  CAS  Google Scholar 

  • Nishino Y, Yasunaga T, Miyazawa A (2007) A genetically encoded metallothionein tag enabling efficient protein detection by electron microscopy. J Electron Microsc 56:93–101

    Article  CAS  Google Scholar 

  • Nogi T, Sangawa T, Tabata S et al (2008) Novel affinity tag system using structurally defined antibody-tag interaction: application to single-step protein purification. Protein Sci 17: 2120–2126

    Article  CAS  Google Scholar 

  • Nogi T, Yasui N, Mihara E et al (2010) Structural basis for semaphorin signalling through the plexin receptor. Nature 467:1123–1127

    Article  CAS  Google Scholar 

  • Pigino G, Bui KH, Maheshwari A et al (2011) Cryoelectron tomography of radial spokes in cilia and flagella. J Cell Biol 195:673–687

    Article  CAS  Google Scholar 

  • Prasad BV, Burns JW, Marietta E et al (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343:476–479

    Article  CAS  Google Scholar 

  • Sangawa T, Tabata S, Suzuki K et al (2013) A multipurpose fusion tag derived from an unstructured and hyperacidic region of the amyloid precursor protein. Protein Sci 22:840–850

    Article  CAS  Google Scholar 

  • Sassenfeld HM, Brewer SJ (1984) A polypeptide fusion designed for the purification of recombinant proteins. Bio-Technol 2:76–81

    CAS  Google Scholar 

  • Schmidt TG, Skerra A (2007) The strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535

    Article  CAS  Google Scholar 

  • Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia-coli as fusions with glutathione s-transferase. Gene 67:31–40

    Article  CAS  Google Scholar 

  • Stofkohahn RE, Carr DW, Scott JD (1992) A single step purification for recombinant proteins – characterization of a microtubule associated protein (map-2) fragment which associates with the type-II camp-dependent protein-kinase. FEBS Lett 302:274–278

    Article  CAS  Google Scholar 

  • Tabata S, Nampo M, Mihara E et al (2010) A rapid screening method for cell lines producing singly-tagged recombinant proteins using the “TARGET tag” system. J Proteome 73:1777–1785

    Article  CAS  Google Scholar 

  • Takagi J, Springer TA (2002) Integrin activation and structural rearrangement. Immunol Rev 186:141–163

    Article  CAS  Google Scholar 

  • Takagi J, Petre BM, Walz T et al (2002) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599–611

    Article  CAS  Google Scholar 

  • Takeda H, Zhou W, Kido K et al (2017) CP5 system, for simple and highly efficient protein purification with a C-terminal designed mini tag. PLoS One 12:e0178246

    Article  Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  Google Scholar 

  • Walker F, Orchard SG, Jorissen RN et al (2004) CR1/CR2 interactions modulate the functions of the cell surface epidermal growth factor receptor. J Biol Chem 279:22387–22398

    Article  CAS  Google Scholar 

  • Wang H, Han W, Takagi J et al (2018) Yeast inner-subunit PA-NZ-1 labeling strategy for accurate subunit identification in a macromolecular complex through cryo-EM analysis. J Mol Biol 430:1417–1425

    Article  CAS  Google Scholar 

  • Yano T, Takeda H, Uematsu A et al (2016) AGIA tag system based on a high affinity rabbit monoclonal antibody against human dopamine receptor D1 for protein analysis. PLoS One 11:e0156716

    Article  Google Scholar 

  • Zhu J, Luo BH, Xiao T et al (2008) Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 32:849–861

    Article  CAS  Google Scholar 

  • Zingsheim HP, Barrantes FJ, Frank J et al (1982) Direct structural localization of two toxin-recognition sites on an ACh receptor protein. Nature 299:81–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, Z.P., Takagi, J. (2018). The PA Tag: A Versatile Peptide Tagging System in the Era of Integrative Structural Biology. In: Nakamura, H., Kleywegt, G., Burley, S., Markley, J. (eds) Integrative Structural Biology with Hybrid Methods. Advances in Experimental Medicine and Biology, vol 1105. Springer, Singapore. https://doi.org/10.1007/978-981-13-2200-6_6

Download citation

Publish with us

Policies and ethics