Skip to main content

Design Concepts in Association Toehold for Robust Signal Transduction

  • Chapter
  • First Online:
Engineering a Robust DNA Circuit for the Direct Detection of Biomolecular Interactions

Part of the book series: Springer Theses ((Springer Theses))

  • 301 Accesses

Abstract

The experimental implementation of in silico DNA circuit designs has been hindered by the problem of circuit leakage. Here, we systematically analyzed the sources and characteristics of various types of leakage in a split proximity circuit which was engineered to spatially probe for target sites held within close proximity. Direct evidence that 3′-truncated oligonucleotides were the major impurity contributing to circuit leakage was presented. More importantly, a unique strategy of translocating a single nucleotide between domains, termed ‘inter-domain bridging’, was introduced to eliminate toehold-independent leakages while enhancing the strand displacement kinetics across a three-way junction. We also analyzed the dynamics of intermediate complexes involved in the circuit computation in order to define the working range of domain lengths for the reporter toehold and association region respectively. The final circuit design was successfully implemented on a model streptavidin-biotin system and demonstrated to be robust against both circuit leakage and biological interferences. We anticipate that this simple signal transduction strategy can be used to probe for diverse biomolecular interactions when used in conjunction with specific target recognition moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, W., Jimmy Huang, P.-J., Ding, J., Liu, J.: Aptamer-based biosensors for biomedical diagnostics. Analyst 139, 2627 (2014)

    Article  CAS  Google Scholar 

  2. Morell, M., Ventura, S., Avilés, F.X.: Protein complementation assays: approaches for the in vivo analysis of protein interactions. FEBS Lett. 583, 1684 (2009)

    Article  CAS  Google Scholar 

  3. Stynen, B., Tournu, H., Tavernier, J., Van Dijck, P.: Diversity in genetic in Vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol. Mol. Biol. R. 76, 331 (2012)

    Article  CAS  Google Scholar 

  4. Porter, J.R., Stains, C.I., Jester, B.W., Ghosh, I.: A general and rapid cell-free approach for the interrogation of protein—protein, protein—DNA, and protein—RNA interactions and their antagonists utilizing split-protein reporters. J. Am. Chem. Soc. 130, 6488 (2008)

    Article  CAS  Google Scholar 

  5. Genot, A.J., Zhang, D.Y., Bath, J., Turberfield, A.J.: Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc. 133, 2177 (2011)

    Article  CAS  Google Scholar 

  6. Chen, X.: Expanding the rule set of DNA circuitry with associative toehold activation. J. Am. Chem. Soc. 134, 263 (2012)

    Article  CAS  Google Scholar 

  7. Tang, Y., Lin, Y., Yang, X., Wang, Z., Le, X.C., Li, F.: Universal Strategy to Engineer Catalytic DNA Hairpin Assemblies for Protein Analysis. Anal. Chem. 87, 8063 (2015)

    Article  CAS  Google Scholar 

  8. Li, F., Lin, Y., Le, X.C.: Binding-induced formation of DNA three-way junctions and its application to protein detection and DNA strand displacement. Anal. Chem. 85, 10835 (2013)

    Article  CAS  Google Scholar 

  9. Tang, Y., Wang, Z., Yang, X., Chen, J., Liu, L., Zhao, W., Le, X.C., Li, F.: Constructing real-time, wash-free, and reiterative sensors for cell surface proteins using binding-induced dynamic DNA assembly. Chem. Sci. 6, 5729 (2015)

    Article  CAS  Google Scholar 

  10. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406 (2003)

    Article  CAS  Google Scholar 

  11. Li, B., Ellington, A.D., Chen, X.: Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Res. 39, e110 (2011)

    Article  CAS  Google Scholar 

  12. Machinek, R. R. F.; Ouldridge, T. E.; Haley, N. E. C.; Bath, J.; Turberfield, A. J. Programmable Energy Landscapes for Kinetic Control of DNA Strand Displacement. Nat. Commun. 5 (2014)

    Google Scholar 

  13. Zhang, D.Y., Winfree, E.: Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic Acids Res. 38, 4182 (2010)

    Article  CAS  Google Scholar 

  14. Chen, X., Briggs, N., McLain, J. R., Ellington, A. D.: Stacking nonenzymatic circuits for high signal gain. Proc. Natl. Acad. Sci. U.S.A. 110, 5386 (2013)

    Google Scholar 

  15. Ang, Y.S., Yung, L.-Y.L.: Rational design of hybridization chain reaction monomers for robust signal amplification. Chem. Commun. 52, 4219 (2016)

    Article  CAS  Google Scholar 

  16. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. U.S.A. 101, 15275 (2004)

    Google Scholar 

  17. Temsamani, J., Kubert, M., Agrawal, S.: Sequence identity of the n-1 product of a synthetic oligonucleotide. Nucleic Acids Res. 23, 1841 (1995)

    Article  CAS  Google Scholar 

  18. Li, B., Jiang, Y., Chen, X., Ellington, A.D.: Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. J. Am. Chem. Soc. 134, 13918 (2012)

    Article  CAS  Google Scholar 

  19. Jiang, Y.S., Bhadra, S., Li, B., Ellington, A.D.: Mismatches improve the performance of strand-displacement nucleic acid circuits. Angew. Chem. Int. Ed. 53, 1845 (2014)

    Article  CAS  Google Scholar 

  20. Schofield, M.J., Hsieh, P.: DNA mismatch repair: molecular mechanisms and biological function. Annu. Rev. Microbiol. 57, 579 (2003)

    Article  CAS  Google Scholar 

  21. Hughes, R.A., Miklos, A.E., Ellington, A.D.: In Christopher, V (ed.) Methods Enzymol, vol. 498, p. 277. Academic Press (2011)

    Google Scholar 

  22. Ducani, C., Kaul, C., Moche, M., Shih, W.M., Hogberg, B.: Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 10, 647 (2013)

    Article  CAS  Google Scholar 

  23. Khodakov, D.A., Khodakova, A.S., Huang, D.M., Linacre, A., Ellis, A.V.: Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA. Sci. Rep. 5, 8721 (2015)

    Article  CAS  Google Scholar 

  24. Srinivas, N., Ouldridge, T.E., Šulc, P., Schaeffer, J.M., Yurke, B., Louis, A.A., Doye, J.P.K., Winfree, E.: On the biophysics and kinetics of toehold-mediated dna strand displacement. Nucleic Acids Res. 41, 8886 (2013)

    Article  Google Scholar 

  25. Davis, Mark E., Davis, R.J.: Fundamentals of chemical reaction engineering. McGraw-Hill, Boston (2003)

    Google Scholar 

  26. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103 (2011)

    Article  CAS  Google Scholar 

  27. Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M., Pierce, N.A.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170 (2011)

    Article  CAS  Google Scholar 

  28. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan Shan, A. (2018). Design Concepts in Association Toehold for Robust Signal Transduction. In: Engineering a Robust DNA Circuit for the Direct Detection of Biomolecular Interactions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2188-7_6

Download citation

Publish with us

Policies and ethics