Skip to main content

Designing Hybridization Chain Reaction Monomers for Robust Signal Amplification

  • Chapter
  • First Online:
Engineering a Robust DNA Circuit for the Direct Detection of Biomolecular Interactions

Part of the book series: Springer Theses ((Springer Theses))

  • 364 Accesses

Abstract

Methods to amplify the signal of biomolecular recognition events are essential for the detection of low target count encountered in applications such as early disease diagnosis. Hybridization chain reaction (HCR) is an attractive isothermal, enzyme-free amplification scheme involving the localised hybridization of metastable DNA hairpins into one-dimensional DNA assembly. One challenge in HCR is the difficulty in converting the molecular assembly event into a turn-on optical signal in a one-pot format which limits its utility as a general signal amplification tool. In this work, we established a four-point hairpin guidelines for the design of hairpin sequences through simulations and experimental validation. This enabled greater flexibility to customise specific hairpin sequences for use with the readout platform of interest. Using a shorter hairpin stem length, a one-pot signal amplification system was demonstrated by incorporating distance-sensitive Förster resonance energy transfer (FRET) readout. Controlled amplification was achieved as characterized by the predictable relationship between the detection dynamic range and hairpin concentration. We anticipate this HCR FRET system to be useful for the in situ detection and localized visualization of biological events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niu, S., Jiang, Y., Zhang, S.: Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chem. Commun. 46, 3089 (2010)

    Article  CAS  Google Scholar 

  2. Zhang, B., Liu, B., Tang, D., Niessner, R., Chen, G., Knopp, D.: DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal. Chem. 84, 5392 (2012)

    Article  CAS  Google Scholar 

  3. Choi, J., Routenberg Love, K., Gong, Y., Gierahn, T.M., Love, J.C.: Immuno-hybridization chain reaction for enhancing detection of individual cytokine-secreting human peripheral mononuclear cells. Anal. Chem. 83, 6890 (2011)

    Article  CAS  Google Scholar 

  4. Chen, X., Briggs, N., McLain, J.R., Ellington, A.D.: Stacking nonenzymatic circuits for high signal gain. Proc. Natl. Acad. Sci. U.S.A. 110, 5386 (2013)

    Article  CAS  Google Scholar 

  5. Jiang, Y.S., Bhadra, S., Li, B., Ellington, A.D.: Mismatches improve the performance of strand-displacement nucleic acid circuits. Angew. Chem. Int. Ed. 53, 1845 (2014)

    Article  CAS  Google Scholar 

  6. Choi, H.M.T., Beck, V.A., Pierce, N.A.: Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284 (2014)

    Article  CAS  Google Scholar 

  7. Wang, X., Lau, C., Kai, M., Lu, J.: Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences. Analyst 138, 2691 (2013)

    Article  CAS  Google Scholar 

  8. Yang, X., Yu, Y., Gao, Z.: A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano 8, 4902 (2014)

    Article  CAS  Google Scholar 

  9. Zheng, J., Hu, Y., Bai, J., Ma, C., Li, J., Li, Y., Shi, M., Tan, W., Yang, R.: Universal surface-enhanced raman scattering amplification detector for ultrasensitive detection of multiple target analytes. Anal. Chem. 86, 2205 (2014)

    Article  CAS  Google Scholar 

  10. Dai, S., Xue, Q., Zhu, J., Ding, Y., Jiang, W., Wang, L.: An ultrasensitive fluorescence assay for protein detection by hybridization chain reaction-based DNA nanotags. Biosens. Bioelectron. 51, 421 (2014)

    Article  CAS  Google Scholar 

  11. Liu, Y., Luo, M., Yan, J., Xiang, X., Ji, X., Zhou, G., He, Z.: An ultrasensitive biosensor for DNA detection based on hybridization chain reaction coupled with the efficient quenching of a ruthenium complex to CdTe quantum dots. Chem. Commun. 49, 7424 (2013)

    Article  CAS  Google Scholar 

  12. Dong, J., Cui, X., Deng, Y., Tang, Z.: Amplified detection of nucleic acid by G-quadruplex based hybridization chain reaction. Biosens. Bioelectron. 38, 258 (2012)

    Article  CAS  Google Scholar 

  13. Liu, P., Yang, X., Sun, S., Wang, Q., Wang, K., Huang, J., Liu, J., He, L.: Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal. Chem. 85, 7689 (2013)

    Article  CAS  Google Scholar 

  14. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. U.S.A. 101, 15275 (2004)

    Article  CAS  Google Scholar 

  15. Tsourkas, A., Behlke, M.A., Bao, G.: Structure-function relationships of shared-stem and conventional molecular beacons. Nucleic Acids Res. 30, 4208 (2002)

    Article  CAS  Google Scholar 

  16. Chen, X., Briggs, N., McLain, J.R., Ellington, A.D.: Stacking nonenzymatic circuits for high signal gain. Proc. Natl. Acad. Sci. U. S. A. 110, 5386 (2013)

    Article  CAS  Google Scholar 

  17. Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M., Pierce, N.A.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170 (2011)

    Article  CAS  Google Scholar 

  18. Koos, B., Cane, G., Grannas, K., Lof, L., Arngarden, L., Heldin, J., Clausson, C.-M., Klaesson, A., Hirvonen, M.K., de Oliveira, F.M.S., Talibov, V.O., Pham, N.T., Auer, M., Danielson, U.H., Haybaeck, J., Kamali-Moghaddam, M., Soderberg, O.: Proximity-dependent initiation of hybridization chain reaction. Nat. Commun. 6, 7294 (2015)

    Article  CAS  Google Scholar 

  19. Chen, X.: Expanding the rule set of DNA circuitry with associative toehold activation. J. Am. Chem. Soc. 134, 263 (2012)

    Article  CAS  Google Scholar 

  20. You, M., Peng, L., Shao, N., Zhang, L., Qiu, L., Cui, C., Tan, W.: DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc. 136, 1256 (2014)

    Article  CAS  Google Scholar 

  21. Tang, Y., Wang, Z., Yang, X., Chen, J., Liu, L., Zhao, W., Le, X.C., Li, F.: Constructing real-time, wash-free, and reiterative sensors for cell surface proteins using binding-induced dynamic DNA assembly. Chem. Sci. 6, 5729 (2015)

    Article  CAS  Google Scholar 

  22. Wu, C., Cansiz, S., Zhang, L., Teng, I.T., Qiu, L., Li, J., Liu, Y., Zhou, C., Hu, R., Zhang, T., Cui, C., Cui, L., Tan, W.: A nonenzymatic hairpin DNA cascade reaction provides high signal gain of mRNA imaging inside live cells. J. Am. Chem. Soc. 137, 4900 (2015)

    Article  CAS  Google Scholar 

  23. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012)

    Article  CAS  Google Scholar 

  24. Wu, Z., Liu, G.-Q., Yang, X.-L., Jiang, J.-H.: Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J. Am. Chem. Soc. 137, 6829 (2015)

    Article  CAS  Google Scholar 

  25. Cheglakov, Z., Cronin, T.M., He, C., Weizmann, Y.: Live cell microRNA imaging using cascade hybridization reaction. J. Am. Chem. Soc. 137, 6116 (2015)

    Article  CAS  Google Scholar 

  26. Tsourkas, A., Behlke, M.A., Rose, S.D., Bao, G.: Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res. 31, 1319 (2003)

    Article  CAS  Google Scholar 

  27. Li, B., Jiang, Y., Chen, X., Ellington, A.D.: Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. J. Am. Chem. Soc. 134, 13918 (2012)

    Article  CAS  Google Scholar 

  28. Nazarenko, I., Pires, R., Lowe, B., Obaidy, M., Rashtchian, A.: Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res. 30, 2089 (2002)

    Article  CAS  Google Scholar 

  29. Fredriksson, S., Gullberg, M., Jarvius, J., Olsson, C., Pietras, K., Gustafsdottir, S.M., Ostman, A., Landegren, U.: Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473 (2002)

    Article  CAS  Google Scholar 

  30. Mocanu, M.-M., Váradi, T., Szöllősi, J., Nagy, P.: Comparative analysis of Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assay (PLA). Proteomics 11, 2063 (2011)

    Article  CAS  Google Scholar 

  31. Ma, C., Wang, W., Mulchandani, A., Shi, C.: A simple colorimetric DNA detection by target-induced hybridization chain reaction for isothermal signal amplification. Anal. Biochem. 457, 19 (2014)

    Article  CAS  Google Scholar 

  32. Choi, H.M.T., Chang, J.Y., Trinh, L.A., Padilla, J.E., Fraser, S.E., Pierce, N.A.: Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208 (2010)

    Article  CAS  Google Scholar 

  33. Ren, W., Liu, H., Yang, W., Fan, Y., Yang, L., Wang, Y., Liu, C., Li, Z.: A cytometric bead assay for sensitive DNA detection based on enzyme-free signal amplification of hybridization chain reaction. Biosens. Bioelectron. 49, 380 (2013)

    Article  CAS  Google Scholar 

  34. Zhang, Y., Liu, C., Sun, S., Tang, Y., Li, Z.: Phosphorylation-induced hybridization chain reaction on beads: an ultrasensitive flow cytometric assay for the detection of T4 polynucleotide kinase activity. Chem. Commun. 51, 5832 (2015)

    Article  CAS  Google Scholar 

  35. Huang, J., Wu, Y., Chen, Y., Zhu, Z., Yang, X., Yang, C.J., Wang, K., Tan, W.: Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew. Chem. Int. Ed. 50, 401 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan Shan, A. (2018). Designing Hybridization Chain Reaction Monomers for Robust Signal Amplification. In: Engineering a Robust DNA Circuit for the Direct Detection of Biomolecular Interactions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2188-7_5

Download citation

Publish with us

Policies and ethics