Skip to main content

Three Quarks Confined by an Area-Dependent Potential in Two Dimensions

  • Conference paper
  • First Online:
  • 612 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 255))

Abstract

We study the low-lying parts of the spectrum of three-quark states with definite permutation symmetry bound by an area-dependent three-quark potential. Such potentials generally confine three quarks in non-collinear configurations, but classically allow for free (unbound) collinear motion. We use our previous work to evaluate the low-lying parts of the spectrum in a non-adiabatic approximation. We show that the eigen-energies are positive and discrete, i.e., that the system is quantum-mechanically confined in spite of the classically allowed free collinear motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The three-dimensional calculation will be shown elsewhere.

  2. 2.

    which has measure zero as compared with the set of all three-body configurations - “shape space”.

References

  1. V. Dmitrašinović and Igor Salom, p. 13, (Bled Workshops in Physics. Vol. 13 No. 1) (2012).

    Google Scholar 

  2. V. Dmitrašinović and Igor Salom, Acta Phys. Polon. Supp. 6, 905 (2013).

    Article  Google Scholar 

  3. V. Dmitrašinović and Igor Salom, J. Math. Phys. 55, 082105 (16) (2014).

    Google Scholar 

  4. Igor Salom and V. Dmitrašinović, Springer Proc. Math. Stat. 191, 431 (2016).

    Google Scholar 

  5. Igor Salom and V. Dmitrašinović, Phys. Lett. A 380, 1904-1911 (2016).

    Article  MathSciNet  Google Scholar 

  6. Igor Salom and V. Dmitrašinović, Nucl. Phys. B 920, 521 (2017).

    Article  Google Scholar 

  7. D. Gromes and I. O. Stamatescu, Nucl. Phys. B 112, 213 (1976); Z. Phys. C 3, 43 (1979).

    Article  Google Scholar 

  8. N. Isgur and G. Karl, Phys. Rev. D 19, 2653 (1979).

    Article  Google Scholar 

  9. J. -M. Richard and P. Taxil, Nucl. Phys. B 329, 310 (1990).

    Article  Google Scholar 

  10. K. C. Bowler, P. J. Corvi, A. J. G. Hey, P. D. Jarvis and R. C. King, Phys. Rev. D 24, 197 (1981).

    Article  MathSciNet  Google Scholar 

  11. K. C. Bowler and B. F. Tynemouth, Phys. Rev. D 27, 662 (1983).

    Article  Google Scholar 

  12. V. Dmitrašinović, T. Sato and M. Šuvakov, Eur. Phys. J. C 62, 383 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the Serbian Ministry of Science and Technological Development under grant numbers OI 171031, OI 171037 and III 41011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Salom .

Editor information

Editors and Affiliations

Appendix

Appendix

Equation (1) can be re-written as a function of (the absolute value of) only one O(3) (hyper-)spherical harmonic in the shape (hyper-)space: the \(|{Y}_{10}(\alpha , \phi )|\):

$$\begin{aligned} \frac{2}{R^2} |{\varvec{\rho }} \times {\varvec{\lambda }}|= & {} |\cos \alpha | = \sqrt{\frac{4 \pi }{3}} |{Y}_{10}(\alpha , \phi )| . \ \end{aligned}$$
(6)

Now, the absolute value of \(|{Y}_{10}(\alpha , \phi )|\) can be expressed as \(\sqrt{{Y}_{10}^{*}(\alpha , \phi ){Y}_{10}(\alpha , \phi )}\) and the O(3) Clebsch–Gordan expansion can be applied to \({Y}_{10}^{*}(\alpha , \phi ){Y}_{10}(\alpha , \phi )\), which contains only the (obviously even) values of \(L=0,2\), as in Eq. (A12) of Ref. [3].

$$\begin{aligned} \frac{2}{R^2} |{\varvec{\rho }} \times {\varvec{\lambda }}|= & {} \sqrt{\frac{1}{3}} \sqrt{1 + \frac{2}{\sqrt{5}} \frac{Y_{20}(\alpha , \phi )}{{Y}_{00} (\alpha , \phi )}}. \ \end{aligned}$$
(7)

The square root can be expanded in a Taylor-like series, the first two terms of which coincide with the expansion in Legendre polynomials, or O(3) spherical harmonics, and for \(L=0\), even in O(4) hyper-spherical harmonics

$$\begin{aligned} \frac{2}{R^2} |{\varvec{\rho }} \times {\varvec{\lambda }}|= & {} \sqrt{\frac{1}{3}} \left( 1 + \frac{1}{\sqrt{5}} \frac{Y_{20}(\alpha , \phi )}{{Y}_{00} (\alpha , \phi )} + \cdots \right) . \ \end{aligned}$$
(8)

Manifestly the Legendre polynomial expansion, Eq. (8) is limited to even-order \(J=0,2,4, \ldots \) terms only,

$$\begin{aligned} V_\mathrm{HY}(R, \alpha , \phi )= & {} \frac{k}{2} \left( v_{a} ({\varvec{\rho }}^2 + {\varvec{\lambda }}^2) + v_{b} |{\varvec{\rho }} \times {\varvec{\lambda }}| \right) . \end{aligned}$$
(9)
$$\begin{aligned}= & {} \frac{k}{2} R^2 \left( v_{a} + v_{b} \frac{1}{2}\sqrt{\frac{1}{3}} \left( 1 + \frac{1}{\sqrt{5}} \frac{Y_{20}(\alpha , \phi )}{{Y}_{00} (\alpha , \phi )} + \cdots \right) \right) \nonumber \\= & {} \frac{k}{2} R^2 \frac{v_0^{HY}}{\sqrt{4 \pi }} \left( 1 + \frac{v^{HY}_2}{v^{HY}_0} \sqrt{{4 \pi }} {Y}_{20}(\alpha , \phi ) + \cdots \right) . \ \end{aligned}$$
(10)

Note, however, that \(v_{b}/v_{a} \ne v^{HY}_2/v^{HY}_0\). In particular the additive constant in the expansion Eq. (8) is important, as it ensures the (overall) positivity of this potential and leads to the change of “effective couplings”

$$v_{00}^{HY} = \sqrt{4\pi } \left( v_{a} + v_{b} \frac{1}{2}\sqrt{\frac{1}{3}} \right) ,$$

and

$$v_{2}^{HY} = v_{b} \frac{1}{2}\sqrt{\frac{4 \pi }{15}} .$$

These two equations in turn lead to

$$\frac{v_{20}^{HY}}{v_{00}^{HY}} = \frac{v_{b} \frac{1}{2}\sqrt{\frac{4 \pi }{15}}}{\sqrt{4\pi } \left( v_{a} + v_{b} \frac{1}{2}\sqrt{\frac{1}{3}} \right) } = \frac{v_{b}}{{2}\sqrt{15} \left( v_{a} + v_{b} \frac{1}{2}\sqrt{\frac{1}{3}} \right) },$$

and in particular in the \(v_a \rightarrow 0\) limit, this ratio for the HY potential equals that of the pure area potential:

$${\lim }_{v_a \rightarrow 0} \left( \frac{v_{20}^{HY}}{v_{00}^{HY}}\right) = \frac{1}{\sqrt{5}}.$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salom, I., Dmitrašinović, V. (2018). Three Quarks Confined by an Area-Dependent Potential in Two Dimensions. In: Dobrev, V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2. LT-XII/QTS-X 2017. Springer Proceedings in Mathematics & Statistics, vol 255. Springer, Singapore. https://doi.org/10.1007/978-981-13-2179-5_31

Download citation

Publish with us

Policies and ethics