Skip to main content

Pattern Mismatch Guided Interference Elimination

  • Chapter
  • First Online:
  • 605 Accesses

Abstract

Electronic nose composed of MOS sensors cannot be used when there are unwanted gases; therefore, it is urgent to solve the problem of interferences elimination. The presented method in Chap. 15 tends to discriminate the interference gases and target gases and depends on the number of types of interference gases. However, there are numerous interferences in real-world application scenario, which is impossible to be sampled in laboratory experiments. Considering that the target gases rather than interferences can be fixed as invariant information, a novel and effective pattern mismatch-based interference elimination (PMIE) method is proposed in this chapter. It contains two parts: discrimination (i.e., pattern mismatch) and correction (i.e., interference elimination). Specifically, the principle behind is that the interference discrimination is achieved by deciding whether a new pattern violates the rules established on the invariant target gases information (i.e., interference gas) or not (i.e., target gas). If the current pattern of the sensor array is interference, orthogonal signal correction (OSC) algorithm is used for interference correction. Experimental results prove that the proposed PMIE method is very effective for interferences elimination in electronic nose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.M. Scott, D. James, Z. Ali, Data analysis for electronic nose systems. Microchim. Acta 156, 183–207 (2007)

    Article  Google Scholar 

  2. L. Zhang, F. Tian, Performance study of multilayer perceptrons in a low-cost electronic nose. IEEE Trans. Instrum. Meas. 63, 1670–1679 (2014)

    Article  Google Scholar 

  3. X. Tian, Y. Yin, H. Liu, Research on artificial olfactory sensor technology for liquor identification. Food Sci. 2, 29–32 (2004)

    Google Scholar 

  4. B. Mumyakmaz, A. Özmen, M.A. Ebeoğlu, C. Taşaltın, İ. Gürol, A study on the development of a compensation method for humidity effect in QCM sensor responses. Sens. Actuators, B 1, 277–282 (2010)

    Article  Google Scholar 

  5. K.R. Kashwan, M. Bhuyan, in Robust electronic-nose system with temperature and humidity drift compensation for tea and spice flavour discrimination, Sensors and the International Conference on new Techniques in Pharmaceutical and Biomedical Research, Asian Conference on, 2005-07-20 (2005)

    Google Scholar 

  6. J.W. Gardner, E.L. Hines, F. Molinier, P.N. Bartlett, T.T. Mottram, Prediction of health of dairy cattle from breath samples using neural network with parametric model of dynamic response of array of semiconducting gas sensors, Science, Measurement and Technology, IEEE Proceedings—2, 102–106 (1999)

    Google Scholar 

  7. X. Xiao-Liang, Q. Jun-Na and C. Chun, A study on local sensor fusion of wireless sensor networks based on the neural network, Machine Learning and Cybernetics, International Conference on, Kunming, 2008-01-01 (2008)

    Google Scholar 

  8. S. Jianfang, T. Hongbiao, G. Haiyan, Application of wavelet neural network and multi-sensor data fusion technique in intelligent sensor, Intelligent Control and Automation. WCICA 2008. 7th World Congress on, Chongqing, 2008-01-01 (2008)

    Google Scholar 

  9. T.A. Emadi, C. Shafai, M.S. Freund, D.J. Thomson, D.S. Jayas, N.D.G. White, Development of a polymer-based gas sensor—humidity and CO2 sensitivity, Microsystems and Nanoelectronics Research Conference. MNRC 2009. 2nd, Ottawa, ON, Canada, 2009-01-01 (2009)

    Google Scholar 

  10. C. Di Natale, E. Martinelli, A. D’Amico, Counteraction of environmental disturbances of electronic nose data by independent component analysis. Sens. Actuators, B. 82(2–3), 158–165 (2002)

    Article  Google Scholar 

  11. L. Zhang, F. Tian, L. Dang, G. Li, X. Peng, X. Yin, S. Liu, A novel background interferences elimination method in electronic nose using pattern recognition. Sens. Actuators, A 201, 254–263 (2013)

    Article  Google Scholar 

  12. J. Feng, F. Tian, J. Yan, Q. He, Y. Shen, L. Pan, A background elimination method based on wavelet transform in wound infection detection by electronic nose. Sens. Actuators, B 2, 395–400 (2011)

    Article  Google Scholar 

  13. F. Tian, J. Yan, S. Xu, J. Feng, Q. He, Y. Shen, P. Jia, Background interference elimination in wound infection detection by electronic nose based on reference vector-based independent component analysis. Inf. Technol. J. 7 (2012)

    Google Scholar 

  14. N.G. Yee, G.G. Coghill, Factor selection strategies for orthogonal signal correction applied to calibration of near-infrared spectra. Chemometr. Intell. Lab. Syst. 67, 145–156 (2003)

    Article  Google Scholar 

  15. J. Feng, F. Tian, P. Jia, Q. He, Y. Shen, S. Fan, Improving the performance of electronic nose for wound infection detection using orthogonal signal correction and particle swarm optimization. Sens. Rev. 34, 389–395 (2014)

    Article  Google Scholar 

  16. X. Zhang, X. Li, Y. Feng, Z. Liu, The use of ROC and AUC in the validation of objective image fusion evaluation metrics. Sig. Process. 115, 38–48 (2015)

    Article  Google Scholar 

  17. V. Nykänen, I. Lahti, T. Niiranen, K. Korhonen, Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt. Northern Finl. Ore Geol. Rev. 71, 853–860 (2015)

    Article  Google Scholar 

  18. M. Thomas, K. De Brabanter, J.A.K. Suykens, B. De Moor, Predicting breast cancer using an expression values weighted clinical classifier. BMC Bioinform. 15 (2014)

    Google Scholar 

  19. S. Wold, H. Antti, F. Lindgren, J. Öhman, Orthogonal signal correction of near-infrared spectra. Chemometr. Intell. Lab. Syst. 44, 175–185 (1998)

    Article  Google Scholar 

  20. Z. Talebpour, R. Tavallaie, S.H. Ahmadi, A. Abdollahpour, Simultaneous determination of penicillin G salts by infrared spectroscopy: evaluation of combining orthogonal signal correction with radial basis function-partial least squares regression. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 76, 452–457 (2010)

    Article  Google Scholar 

  21. L. Laghi, A. Versari, G.P. Parpinello, D.Y. Nakaji, R.B. Boulton, FTIR spectroscopy and direct orthogonal signal correction preprocessing applied to selected phenolic compounds in red wines. Food Anal. Methods 4, 619–625 (2011)

    Article  Google Scholar 

  22. D.J. Bouveresse, A. Moya-González, F. Ammari, D.N. Rutledge, Two novel methods for the determination of the number of components in independent components analysis models. Chemometr. Intell. Lab. Syst. 112, 24–32 (2012)

    Article  Google Scholar 

  23. S. Balasubramanian, S. Panigrahi, C.M. Logue, C. Doetkott, M. Marchello, J.S. Sherwood, Independent component analysis-processed electronic nose data for predicting Salmonella typhimurium populations in contaminated beef. Food Control 19, 236–246 (2008)

    Article  Google Scholar 

  24. T. Aguilera, J. Lozano, J.A. Paredes, F.J. Alvarez, J.I. Suarez, Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction. Sens. Basel 6, 8055–8072 (2012)

    Article  Google Scholar 

  25. M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, S. Marco, Drift compensation of gas sensor array data by orthogonal signal correction. Chemometr. Intell. Lab. Syst. 100, 28–35 (2010)

    Article  Google Scholar 

  26. L. Zhang, F. Tian, S. Liu, L. Dang, X. Peng, X. Yin, Chaotic time series prediction of E-nose sensor drift in embedded phase space. Sens. Actuators, B 182, 71–79 (2013)

    Article  Google Scholar 

  27. M. Holmberg, F.A.M. Davide, C. Di Natale, A. D’Amico, F. Winquist, I. Lundström, Drift counteraction in odour recognition applications: lifelong calibration method. Sens. Actuators, B 42, 185–194 (1997)

    Article  Google Scholar 

  28. L. Zhang, D. Zhang, Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas. 64, 1790–1801 (2015)

    Article  Google Scholar 

  29. L. Zhang, F.C. Tian, C. Kadri, B. Xiao, H. Li, L. Pan, H. Zhou, On-line sensor calibration transfer among electronic nose instruments for monitor volatile organic chemical in indoor air quality. Sens. Actuators, B 160, 899–909 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tian, F., Zhang, D. (2018). Pattern Mismatch Guided Interference Elimination. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-2167-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2167-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2166-5

  • Online ISBN: 978-981-13-2167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics