Skip to main content

Domain Correction-Based Adaptive Extreme Learning Machine

  • Chapter
  • First Online:
Book cover Electronic Nose: Algorithmic Challenges

Abstract

This chapter presents a novel domain correction and adaptive extreme learning machines framework (DC-AELM) with transferring capability to solve the drift and interference problem of E-nose. The framework consists of two parts: (1) domain correction (DC) that makes the distributions of two domains close; (2) adaptive extreme learning machine (AELM) that learns a transferable classifier at decision level. This method is motivated by the idea of transfer learning, especially from the perspective of domain correction and decision making, to realize the knowledge transfer for interference suppression and drift compensation. Experiments on a background interference dataset and a public benchmark sensor drift dataset via E-nose verify the effectiveness of the proposed DC-AELM method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Feng, F. Tian, J. Yan, Q. He, Y. Shen, L. Pan, A background elimination method based on wavelet transform in wound infection detection by electronic nose. Sens. Actuators, B Chem. 157(2), 395–400 (2011)

    Article  Google Scholar 

  2. S. Marco, A. Gutierrez-Galvez, Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sens. J. 12(11), 3189–3214 (2012)

    Article  Google Scholar 

  3. G. Korotcenkov, B.K. Cho, Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens. Actuators, B Chem. 156(2), 527–538 (2011)

    Article  Google Scholar 

  4. S.D. Carlo, M. Falasconi, Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges. Adv. Chem. Sens. (2012). https://doi.org/10.5772/33411

    Article  Google Scholar 

  5. T. Artursson, T. Eklöv, I. Lundström et al., Drift correction for gas sensors using multivariate methods. J. Chemometr. 14, 711–723 (2012)

    Article  Google Scholar 

  6. F. Tian, J. Yan, S. Xu, J. Feng, Background interference elimination in wound infection detection by electronic nose based on reference vector-based independent component analysis. Inf. Technol. J. 11(7), 850–858 (2012)

    Article  Google Scholar 

  7. O. Tomic, H. Ulmer, J.E. Haugen, Standardization methods for handling instrument related signal shift in gas-sensor array measurement data. Anal. Chim. Acta 472, 99–111 (2002)

    Article  Google Scholar 

  8. C.D. Natale, E. Martinelli, A.D. Amico, Counteraction of environmental disturbances of electronic nose data by independent component analysis. Sens. Actuators, B Chem. 82, 158–165 (2002)

    Article  Google Scholar 

  9. J. Feng, F. Tian, P. Jia, Q. He, Y. Shen, S. Fan, Improving the performance of electronic nose for wound infection detection using orthogonal signal correction and particle swarm optimization. Sens. Rev. 34(4), 389–395 (2014)

    Article  Google Scholar 

  10. M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, S. Marco, Drift compensation of gas sensor array data by orthogonal signal correction. Chemometr. Intell. Lab. Syst. 100(1), 28–35 (2010)

    Article  Google Scholar 

  11. M. Zuppa, C. Distante, P. Siciliano, K.C. Persaud, Drift counteraction with multiple self-organising maps for an electronic nose. Sens. Actuators, B Chem. 98(2), 305–317 (2004)

    Article  Google Scholar 

  12. S.D. Vito, G. Fattoruso, M. Pardo et al., Semi-supervised learning techniques in artificial olfaction: a novel approach to classification problems and drift counteraction. IEEE Sens. J. 12(11), 3215–3224 (2012)

    Article  Google Scholar 

  13. A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R. Huerta, Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators, B Chem. 167, 320–329 (2012)

    Article  Google Scholar 

  14. E. Martinelli, G. Magna, A. Vergara, C.D. Natale, Cooperative classifiers for reconfigurable sensor arrays. Sens. Actuators, B Chem. 199, 83–92 (2014)

    Article  Google Scholar 

  15. E. Martinelli, G. Magna, S.D. Vito, R.D. Fuccio, G.D. Francia, A. Vergara, C.D. Natale, An adaptive classification model based on the artificial immune system for chemical sensor drift mitigation. Sens. Actuators, B Chem. 177, 1017–1026 (2013)

    Article  Google Scholar 

  16. A.C. Romain, J. Nicolas, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens. Actuators, B Chem. 146(9), 502–506 (2010)

    Article  Google Scholar 

  17. L. Zhang, F. Tian, S. Liu, L. Dang, X. Peng, X. Yin, Chaotic time series prediction of E-nose sensor drift in embedded phase space. Sens. Actuators, B Chem. 182(1), 71–79 (2013)

    Article  Google Scholar 

  18. D.A.P. Daniel, K. Thangavel, R. Manavalan, R.S.C. Boss, ELM-Based Ensemble Classifier for Gas Sensor Array Drift Dataset (Springer, India, 2014). https://doi.org/10.1007/978-81-322-1680-3_10

  19. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Educ. Activities Dept. 22(10), 1345–1359 (2010)

    Google Scholar 

  20. K. Yan, D. Zhang, Correcting instrumental variation and time-varying drift: a transfer learning approach with autoencoders. IEEE Trans. Instrum. Meas. 65(9), 2012–2022 (2016)

    Article  Google Scholar 

  21. K. Yan, D. Zhang, Improving the transfer ability of prediction models for electronic noses. Sens. Actuators, B Chem. 220, 115–124 (2015)

    Article  Google Scholar 

  22. L. Zhang, Y. Liu, P. Deng, Odor recognition in multiple e-nose systems with cross-domain discriminative subspace learning. IEEE Trans. Instrum. Meas. (2017). https://doi.org/10.1109/TIM.2017.2669818

    Article  Google Scholar 

  23. L. Zhang, D. Zhang, Domain adaptation extreme learning machines for drift compensation in e-nose systems. IEEE Trans. Instrum. Meas. 64(7), 1790–1801 (2015)

    Article  Google Scholar 

  24. K. Yan, D. Zhang, Calibration transfer and drift compensation of e-noses via coupled task learning. Sens. Actuators, B Chem. 225, 288–297 (2016)

    Article  Google Scholar 

  25. G. Huang, Q. Zhu, C. Siew, Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  26. G. Feng, G.B. Huang, Q. Lin, R. Gay, Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8), 1352–1357 (2009)

    Article  Google Scholar 

  27. G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2012)

    Article  Google Scholar 

  28. W. Zong, G.B. Huang, Y. Chen, Weighted extreme learning machine for imbalance learning. Neurocomputing 101(3), 229–242 (2013)

    Article  Google Scholar 

  29. Z. Bai, G.B. Huang, D. Wang, H. Wang, M.B. Westover, Sparse extreme learning machine for classification. IEEE Trans. Cybern. 44(10), 1858–1870 (2014)

    Article  Google Scholar 

  30. X. Li, W. Mao, W. Jiang, Fast sparse approximation of extreme learning machine. Neurocomputing 128(5), 96–103 (2014)

    Article  Google Scholar 

  31. G. Huang, S. Song, J.N. Gupta, C. Wu, Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)

    Article  Google Scholar 

  32. L. Zhang, F. Tian, C. Kadri et al., On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality. Sens. Actuators, B Chem. 160(1), 899–909 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tian, F., Zhang, D. (2018). Domain Correction-Based Adaptive Extreme Learning Machine. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-2167-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2167-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2166-5

  • Online ISBN: 978-981-13-2167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics