Skip to main content

Biophysical Approaches to Solve the Structures of the Complex Glycan Shield of Chloroviruses

  • Chapter
  • First Online:
Book cover Glycobiophysics

Abstract

The capsid of Paramecium bursaria chlorella virus (PBCV-1) contains a heavily glycosylated major capsid protein, Vp54. The capsid protein contains four glycans, each N-linked to Asn. The glycan structures are unusual in many aspects: (1) they are attached by a β-glucose linkage, which is rare in nature; (2) they are highly branched and consist of 8–10 neutral monosaccharides; (3) all four glycoforms contain a dimethylated rhamnose as the capping residue of the main chain, a hyper-branched fucose residue and two rhamnose residues ''with opposite absolute configurations; (4) the four glycoforms differ by the nonstoichiometric presence of two monosaccharides, l-arabinose and d-mannose ; (5) the N-glycans from all of the chloroviruses have a strictly conserved core structure; and (6) these glycans do not resemble any structures previously reported in the three domains of life.

The structures of these N-glycoforms remained elusive for years because initial attempts to solve their structures used tools developed for eukaryotic-like systems, which we now know are not suitable for this noncanonical glycosylation pattern. This chapter summarizes the methods used to solve the chlorovirus complex glycan structures with the hope that these methodologies can be used by scientists facing similar problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abergel C, Legendre M, Claverie JM (2015) The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol Rev 39:779–796

    Article  CAS  Google Scholar 

  • Biemann K (1992) Mass spectrometry of peptides and proteins. Annu Rev Biochem 61:977–1010

    Article  CAS  Google Scholar 

  • Bock K, Pedersen C (1983) Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Adv Carbohydr Chem Biochem 41:27–66

    Article  CAS  Google Scholar 

  • Cherrier MV, Kostyuchenko VA, Xiao C et al (2009) An icosahedral algal virus has a complex unique vertex decorated by a spike. PNAS 106:11085–11089

    Article  CAS  Google Scholar 

  • Colson P, De Lamballerie X, Yutin N et al (2013) “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 158:2617–2521

    Article  Google Scholar 

  • De Castro C, Parrilli M, Holst O et al (2010) Microbe-associated molecular patterns in innate immunity: extraction and chemical analysis of gram-negative bacterial lipopolysaccharides. Methods Enzymol 480:89–115

    Article  Google Scholar 

  • De Castro C, Molinaro A, Piacente F et al (2013) Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans. PNAS 110:13956–13960

    Article  Google Scholar 

  • De Castro C, Speciale I, Duncan G et al (2016) N-linked glycans of chloroviruses sharing a core architecture without precedent. Angew Chem Int Ed 55:654–658

    Article  Google Scholar 

  • De Castro C, Klose T, Speciale I et al (2018) Structure of the chlorovirus PBCV-1 major capsid glycoprotein determined by combining crystallographic and carbohydrate molecular modeling approaches. PNAS 115:E44–E52

    Article  Google Scholar 

  • Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

  • Dunigan DD, Cerny RL, Bauman AT et al (2012) Paramecium bursaria chlorella virus 1 proteome reveals novel architectural and regulatory features of a giant virus. J Virol 86:8821–8834

    Article  CAS  Google Scholar 

  • Gargiulo V, De Castro C, Lanzetta R et al (2008) Structural elucidation of the capsular polysaccharide isolated from Kaistella flava. Carbohydr Res 343:2401–2405

    Article  CAS  Google Scholar 

  • Jeanniard A, Dunigan DD, Gurnon JR et al (2013) Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses. BMC Genomics 14:158

    Article  CAS  Google Scholar 

  • Karakashian SJ, Karakashian MW (1965) Evolution and symbiosis in the genus Chlorella and related algae. Evolution 19:368–377

    Article  Google Scholar 

  • Legendre M, Bartolia J, Shmakov L et al (2014) Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. PNAS 111:4274–4279

    Article  CAS  Google Scholar 

  • Lönngren J, Svensson S (1974) Mass spectrometry in structural analysis of natural carbohydrates. Adv Carbohydr Chem Biochem 29:41–106

    Article  Google Scholar 

  • Nandhagopal N, Simpson AA, Gurnon JR et al (2002) The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. PNAS 99:14758–14763

    Article  CAS  Google Scholar 

  • Ongay S, Boichenko A, Govorukhina N et al (2012) Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci 35:2341–2372

    Article  CAS  Google Scholar 

  • Philippe N, Legendre M, Doutre G et al (2013) Pandoraviruses: Amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–286

    Article  CAS  Google Scholar 

  • Quispe CF, Esmael A, Sonderman O et al (2017) Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology 500:103–113

    Article  CAS  Google Scholar 

  • Raoult D, Audic S, Robert C et al (2004) A huge virus that infects amoebae contains genes that are not usually part of the viral repertoire and defines a family of ancient nucleocytoplasmic DNA viruses. Science 306:1344–1350

    Article  CAS  Google Scholar 

  • Speciale I, Agarkova I, Duncan GA et al (2017) Structure of the N-glycans from the chlorovirus NE-JV-1. Anton van Leeuw 110:1391–1399

    Article  CAS  Google Scholar 

  • Van Etten JL, Dunigan DD (2012) Chloroviruses: not your everyday plant virus. Trends Plant Sci 17:1–8

    Article  Google Scholar 

  • Van Etten JL, Meints RH, Kuczmarski D et al (1982) Viruses of symbiotic Chlorella-like algae isolated from Paramecium bursaria and Hydra viridis. PNAS 79:3867–3871

    Article  Google Scholar 

  • Van Etten JL, Gurnon JR, Yanai-Balser GM et al (2010) Chlorella viruses encode most, if not all, of the machinery to glycosylate their glycoproteins independent of the endoplasmic reticulum and Golgi. Biochim Biophys Acta 1800:152–159

    Article  Google Scholar 

  • Van Etten JL, Agarkova I, Dunigan DD et al (2017) Chloroviruses have a sweet tooth. Viruses 9:E88

    Article  Google Scholar 

  • Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15:211–218

    Article  CAS  Google Scholar 

  • Wuhrer M, Catalina MI, Deelder AM et al (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B 849:115–128

    Article  CAS  Google Scholar 

  • Zhang X, Xiang Y, Dunigan DD, Klose T et al (2011) Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid. PNAS 108:14837–14842

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina De Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Castro, C. et al. (2018). Biophysical Approaches to Solve the Structures of the Complex Glycan Shield of Chloroviruses. In: Yamaguchi, Y., Kato, K. (eds) Glycobiophysics. Advances in Experimental Medicine and Biology, vol 1104. Springer, Singapore. https://doi.org/10.1007/978-981-13-2158-0_12

Download citation

Publish with us

Policies and ethics