Skip to main content

Retinal Vessels Changes During the Low Cerebrospinal Fluid Situation

  • Chapter
  • First Online:
  • 474 Accesses

Part of the book series: Advances in Visual Science and Eye Diseases ((AVSED,volume 1))

Abstract

Glaucoma is an optic neuropathy characterized by optic disc cupping and visual field loss. Its pathogenesis mainly involves mechanical and vascular factors, the mechanical theory claims that high intraocular pressure (IOP) causes a deformation of the optic nerve head (ONH), and the vascular theory claims that glaucomatous optic neuropathy is the consequence of insufficient blood supply due to IOP elevation and other risk factors. Up to now, IOP is the only modifiable risk factor for glaucoma. Nevertheless, in some glaucoma patients, the progression of disease continues despite IOP reduction, indicating that vascular disturbance may play a more important role in the development of glaucoma in these patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31(7):500–4.

    CAS  PubMed  Google Scholar 

  2. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36(11):2163–4.

    Google Scholar 

  3. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763.

    Article  Google Scholar 

  4. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N. Cerebrospinal fluid pressure in glaucoma : a prospective study. Ophthalmology. 2010;117(2):259–66.

    Article  Google Scholar 

  5. Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057.

    Article  Google Scholar 

  6. Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83.

    Article  Google Scholar 

  7. Dongqi H, Zeqin R. A biomathematical model for pressure-dependent lamina cribrosa behavior. J Biomech. 1999;32(6):579–84.

    Article  CAS  Google Scholar 

  8. Chen BH, Drucker MD, Louis KM, Richards DW. Progression of normal-tension glaucoma after ventriculoperitoneal shunt to decrease cerebrospinal fluid pressure. J Glaucoma. 2016;25(1):e50–2.

    Article  Google Scholar 

  9. Zhang Z, Liu D, Jonas JB, Wu S, Kwong JM, Zhang J, Liu Q, Li L, Lu Q, Yang D, Wang J, Wang N. Axonal transport in the rat optic nerve following short-term reduction in cerebrospinal fluid pressure or elevation in intraocular pressure. Invest Ophthalmol Vis Sci. 2015;56(8):4257–66.

    Article  Google Scholar 

  10. Guidoboni G, Harris A, Cassani S, Arciero J, Siesky B, Amireskandari A, Tobe L, Egan P, Januleviciene I, Park J. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci. 2014;55(7):4105–18.

    Article  Google Scholar 

  11. Mann C, Anders F, Liu H, et al. Morphological and quantitative changes in retinal and optic nerve vessels in experimental glaucoma model with elevated IOP for 7 weeks. Klin Monbl Augenheilkd. 2018; https://doi.org/10.1055/s-0044-101617.

  12. Sugiyama K, Gu Z, Sugiyama K, Gu Z, Yamamoto CT, Kitazawa Y. Optic nerve and peripapillary choroidal microvasculature of the rat eye. Invest Ophthalmol Vis Sci. 1999;40(13):3084.

    CAS  PubMed  Google Scholar 

  13. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93.

    Article  Google Scholar 

  14. Killer HE, Laeng HR, Flammer J, Groscurth P. Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol. 2003;87(6):777–81.

    Article  CAS  Google Scholar 

  15. Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR. The optic nerve: a new window into cerebrospinal fluid composition? Am J Ophthalmol. 2006;142(3):1027–30.

    Article  Google Scholar 

  16. Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39(8):1419–28.

    CAS  PubMed  Google Scholar 

  17. Jaggi GP, Harlev M, Ziegler U, Dotan S, Miller NR, Killer HE. Cerebrospinal fluid segregation optic neuropathy: an experimental model and a hypothesis. Br J Ophthalmol. 2010;94(8):1088–93.

    Article  Google Scholar 

  18. Hou R, Zhang Z, Yang D, Wang H, Chen W, Li Z, Sang J, Liu S, Cao Y, Xie X, Ren R, Zhang Y, Sabel BA, Wang N. Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Brain Res. 2016;1635:201–8.

    Article  CAS  Google Scholar 

  19. Sugiyama K, Cioffi GA, Bacon DR, Van Buskirk EM. Optic nerve and peripapillary choroidal microvasculature in the primate. J Glaucoma. 1994;3(Suppl 1):S45–54.

    PubMed  Google Scholar 

  20. Amerasinghe N, Aung T, Cheung N, Fong CW, Wang JJ, Mitchell P, Saw SM, Wong TY. Evidence of retinal vascular narrowing in glaucomatous eyes in an Asian population. Invest Ophthalmol Vis Sci. 2008;49(12):5397–402.

    Article  Google Scholar 

  21. Mitchell P, Leung H, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Klein R. Retinal vessel diameter and open-angle glaucoma: the Blue Mountains Eye Study. Ophthalmology. 2005;112(2):245–50.

    Article  Google Scholar 

  22. Kim JM, Sae Kim M, Jang HJ, Ho Park K, Caprioli J. The association between retinal vessel diameter and retinal nerve fiber layer thickness in asymmetric normal tension glaucoma patients. Invest Ophthalmol Vis Sci. 2012;53(9):5609–14.

    Article  Google Scholar 

  23. Kaiser HJ, Schoetzau A, Stumpfig D, Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol. 1997;123(3):320–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L., Lin, C., Wang, N. (2019). Retinal Vessels Changes During the Low Cerebrospinal Fluid Situation. In: Wang, N. (eds) Intraocular and Intracranial Pressure Gradient in Glaucoma. Advances in Visual Science and Eye Diseases, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-13-2137-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2137-5_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2136-8

  • Online ISBN: 978-981-13-2137-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics