Skip to main content

Facts and Myths of Cerebrospinal Fluid Pressure for the Physiology of the Eye

  • Chapter
  • First Online:
Intraocular and Intracranial Pressure Gradient in Glaucoma

Part of the book series: Advances in Visual Science and Eye Diseases ((AVSED,volume 1))

  • 493 Accesses

Abstract

In a strict sense, the term “optic nerve” is not correct, since the optic nerve is part of the central nervous system and is not similar to a peripheral nerve or other cranial nerves, such as the trigeminal nerve. As part of the central nervous system, the optic nerve is surrounded by the meninges and surrounded by cerebrospinal fluid (CSF). Since the optic nerve as a cerebral neural fascicle leaves the intracranial space, the CSF space extends from the intracranial compartment through the tiny optic canal into the orbit and ends anteriorly at the back of the globe. The tissue pressure in the orbital part of the optic nerve is therefore not equal to the tissue pressure in the orbit (about 2 mmHg [1, 2]) but is at least as high as the pressure in the orbital CSF space or the orbital CSF pressure (CSFP) ([3]; Bellezza et al. 2000; [4–15]). These anatomic relationships may be of profound importance for the physiology and pathophysiology of the optic nerve head (optic disc), which acts as the pressure barrier between the intraocular compartment and the retrobulbar compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Møller PM. Tissue pressure in the orbit. Acta Ophthalmol. 1954;32:597–604.

    Google Scholar 

  2. Moller PM. The pressure in the orbit. Acta Ophthalmol. 1955;(Suppl 43):1–100.

    Google Scholar 

  3. Balaratnasingam C, Morgan WH, Johnstone V, Pandav SS, Cringle SJ, Yu DY. Histomorphometric measurements in human and dog optic nerve and an estimation of optic nerve pressure gradients in human. Exp Eye Res. 2009;89:618–28.

    Article  CAS  PubMed  Google Scholar 

  4. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73.

    Article  PubMed  Google Scholar 

  5. Jonas JB. Ophthalmodynamometry in eyes with dilated episcleral veins. J Glaucoma. 2003a;12:285–7.

    Article  PubMed  Google Scholar 

  6. Jonas JB. Ophthalmodynamometric determination of the central retinal vessel collapse pressure correlated with systemic blood pressure. Br J Ophthalmol. 2004;88:501–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jonas JB. Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma. Acta Ophthalmol. 2011;89:505–14.

    Article  PubMed  Google Scholar 

  8. Jonas JB, Fernández MC, Naumann GO. Parapapillary atrophy and retinal vessel diameter in nonglaucomatous optic nerve damage. Invest Ophthalmol Vis Sci. 1991a;32:2942–7.

    CAS  PubMed  Google Scholar 

  9. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36:1163–72.

    CAS  PubMed  Google Scholar 

  10. Morgan WH, Yu DY, Alder VA. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39:1419–28.

    CAS  PubMed  Google Scholar 

  11. Morgan WH, Chauhan BC, Yu DY. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2002;43:3236–42.

    PubMed  Google Scholar 

  12. Morgan WH, Yu DY, Balaratnasingam C. The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma. 2008a;17:408–13.

    Article  PubMed  Google Scholar 

  13. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N. Cerebrospinal fluid pressure in glaucoma. A prospective study. Ophthalmology. 2010;117:259–66.

    Article  PubMed  Google Scholar 

  14. Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31:500–4.

    CAS  PubMed  Google Scholar 

  15. Yablonsky M, Ritch R, Pokorny KS. Effect of decreased intracranial pressure on optic disc. Invest Ophthalmol Vis Sci. 1979;18(Suppl):165.

    Google Scholar 

  16. Wang N, Xie X, Yang D, Xian J, Li Y, Ren R, Wang H, Zhang S, Kang Z, Peng X, Sang J, Zhang Z, Jonas JB, Weinreb RN. Orbital cerebrospinal fluid space in glaucoma. Ophthalmology. 2012;119:2065–2073.e1.

    Article  PubMed  Google Scholar 

  17. Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007;68:155–8.

    Article  CAS  PubMed  Google Scholar 

  18. Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003;44:5189–95.

    Article  PubMed  Google Scholar 

  19. Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationship between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci. 2004;48:2660–5.

    Article  Google Scholar 

  20. Jonas JB, Naumann GOH. Parapapillary retinal vessel diameter in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci. 1989;30:1604–11.

    CAS  PubMed  Google Scholar 

  21. Jonas JB, Nguyen XN, Naumann GO. Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci. 1989;30:1599–603.

    CAS  PubMed  Google Scholar 

  22. Jonas JB. Central retinal artery and vein pressure in patients with chronic open-angle glaucoma. Br J Ophthalmol. 2003c;87:949–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Firsching R, Schütze M, Motschmann M, Behrens-Baumann W. Venous opthalmodynamometry: a noninvasive method for assessment of intracranial pressure. J Neurosurg. 2000;93:33–6.

    Article  CAS  PubMed  Google Scholar 

  24. Firsching R, Müller C, Pauli SU, Voellger B, Röhl FW, Behrens-Baumann W. Noninvasive assessment of intracranial pressure with venous ophthalmodynamometry. J Neurosurg. 2011;115:371–4.

    Article  PubMed  Google Scholar 

  25. Jonas JB, Groden C. Spontaneous carotid-cavernous sinus fistula diagnosed by ophthalmodynamometry. Acta Ophthalmol. 2003;81:419–20.

    Article  Google Scholar 

  26. Jonas JB, Harder B. Ophthalmodynamometric estimation of cerebrospinal fluid pressure in pseudotumor cerebri. Br J Ophthalmol. 2003;87:361–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jonas JB, Hennerici M. Ophthalmodynamometry for diagnosis of dissection of internal carotid artery. Graefes Arch Clin Exp Ophthalmol. 2006;244:129–30.

    Article  PubMed  Google Scholar 

  28. Jonas JB, Pfeil K, Chatzikonstantinou A, Rensch F. Ophthalmodynamometric measurement of central retinal vein pressure as surrogate of intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Ophthalmol. 2008;246:1059–60.

    Article  Google Scholar 

  29. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. Retinal artery and vein pressures in the dog and their relationship to aortic, intraocular, and cerebrospinal fluid pressures. Microvasc Res. 1997;53:211–21.

    Article  CAS  PubMed  Google Scholar 

  30. Jonas JB, Wang N, Wang YX, You QS, Xie XB, Yang D, Xu L. Subfoveal choroidal thickness and cerebrospinal fluid pressure. The Beijing Eye Study 2011. Invest Ophthalmol Vis Sci. 2014b;55:1292–8.

    Article  PubMed  Google Scholar 

  31. Jonas JB, Wang N, Yang D. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci. 2012a;53:6045.

    Article  PubMed  Google Scholar 

  32. Kain S, Morgan WH, Yu DY. New observations concerning the nature of central retinal vein pulsation. Br J Ophthalmol. 2010;94:854–7.

    Article  PubMed  Google Scholar 

  33. Morgan WH, Lind CR, Kain S, Fatehee N, Bala A, Yu DY. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci. 2012a;53:4676–81.

    Article  PubMed  Google Scholar 

  34. Morgan WH, Lind CR, Kain S, Fatehee N, Bala A, Yu DY. Author response: retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci. 2012b;53:6880.

    Article  PubMed  Google Scholar 

  35. Albeck MJ, Borgesen SE, Gjerris F, Schmidt JF, Sørensen PS. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg. 1991;74(4):597–600.

    Article  CAS  PubMed  Google Scholar 

  36. Dickerman RD, Smith GH, Langham-Roof L. Intra-ocular pressure changes during maximal isometric contraction: does this reflect intra-cranial pressure or retinal venous pressure? Neurol Res. 1999;21:243–6.

    Article  CAS  PubMed  Google Scholar 

  37. Jonas JB, Wang N, Wang YX, You QS, Xie XB, Yang D, Xu L. Body height, estimated cerebrospinal fluid pressure, and open-angle glaucoma. The Beijing Eye Study 2011. PLoS One. 2014a;9:e86678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li Z, Yang Y, Lu Y, Liu D, Xu E, Jia J, Yang D, Zhang X, Yang H, Ma D, Wang N. Intraocular pressure vs intracranial pressure in disease conditions: A prospective cohort study (Beijing iCOP study). BMC Neurol. 2012;12:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mansouri K, Liu JH, Weinreb RN, Tafreshi A, Medeiros FA. Analysis of continuous 24-hour intraocular pressure patterns in glaucoma. Invest Ophthalmol Vis Sci. 2012;53:8050–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maurel D, Ixart G, Barbanel G. Effects of acute tilt from orthostatic to headdown antiorthostatic restraint and of sustained restraint on the intra-cerebroventricular pressure in rats. Brain Res. 1996;736:165–73.

    Article  CAS  PubMed  Google Scholar 

  41. Jonas JB, Holbach L, Panda-Jonas S. Peripapillary ring: Histology and correlations. Acta Ophthalmol. 2014i;92:e273–9.

    Article  PubMed  Google Scholar 

  42. Ren R, Wang N, Li B, Li L, Gao F, Xu X, Jonas JB. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with normal and elongated axial length. Invest Ophthalmol Vis Sci. 2009;50:2175–84.

    Article  PubMed  Google Scholar 

  43. Jonas JB, Mardin CY, Schlötzer-Schrehardt U, Naumann GOH. Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci. 1991b;32:401–5.

    CAS  PubMed  Google Scholar 

  44. Hayreh SS. Fluids in the anterior part of the optic nerve in health and disease. Surv Ophthalmol. 1978;23:1–25.

    Article  CAS  PubMed  Google Scholar 

  45. Peyman GA, Apple D. Peroxidase diffusion processes in the optic nerve. Arch Ophthalmol. 1972;88:650–4.

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez-Peralta LA. Hematic and fluid barriers in the optic nerve. J Comp Neurol. 1966;126:109–21.

    Article  CAS  PubMed  Google Scholar 

  47. Tsukahara I, Yamashita H. An electron microscopic study on the blood-optic nerve and fluid-optic nerve barrier. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;196:239–46.

    Article  CAS  PubMed  Google Scholar 

  48. Harder B, Jonas JB. Frequency of spontaneous pulsations of the central retinal vein in normal eyes. Br J Ophthamol. 2007;91:401–2.

    Article  Google Scholar 

  49. Minckler DS, Tso MOM, Zimmermann LE. A light microscopic, autoradiographic study of axonal transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol. 1976;82:741–57.

    Article  CAS  PubMed  Google Scholar 

  50. Quigley HA, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol Vis Sci. 1976;15:606–16.

    CAS  Google Scholar 

  51. Lashutka MK, Chandra A, Murray HN, Philipps GS, Hiestand BC. The relationship of intraocular pressure to intracranial pressure. Ann Emerg Med. 2004;43:585–91.

    Article  PubMed  Google Scholar 

  52. Sajjadi SA, Harirchian MH, Sheikhbahaei N, Mohebbi MR, Malekmadani MH, Saberi H. The relation between intracranial and intraocular pressures: study of 50 patients. Ann Neurol. 2006;59:867–70.

    Article  PubMed  Google Scholar 

  53. Sheeran P, Bland JM, Hall GM. Intra ocular pressure changes and alterations in intra cranial pressure. Lancet. 2000;355:899.

    Article  CAS  PubMed  Google Scholar 

  54. Spentzas T, Henricksen J, Patters AB, Chaum E. Correlation of intraocular pressure with intracranial pressure in children with severe head injuries. Pediatr Crit Care Med. 2010;11:593–8.

    Article  PubMed  Google Scholar 

  55. Czarnik T, Gawda R, Latka D, Kolodzej W, Sznajd-Weron K, Weron R. Noninvasive measurement of intracranial pressure: is it possible? J Trauma. 2007;62(1):207–11.

    Article  PubMed  Google Scholar 

  56. Han Y, McCulley TJ, Horton JC. No correlation between intraocular pressure and intracranial pressure. Ann Neurol. 2008;64:221–4.

    Article  PubMed  Google Scholar 

  57. Kirk T, Jones K, Miller S, Corbett J. Measurement of intraocular and intracranial pressure: is there a relationship? Ann Neurol. 2011;70:323–6.

    Article  PubMed  Google Scholar 

  58. Hayreh SS, Edwards J. Ophthalmic arterial and venous pressures. Effects of acute intracranial hypertension. Br J Ophthalmol. 1971;55:649–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cullen LK, Steffey EP, Bailey CS, Kortz G, da Silva Curiel J, Bellhorn RW, Woliner MJ, Elliott AR, Jarvis KA. Effect of high PaCO2 and time on cerebrospinal fluid and intraocular pressure in halothane-anesthetized horses. Am J Vet Res. 1990;51:300–4.

    CAS  PubMed  Google Scholar 

  60. Berdahl JP. Systemic parameters associated with cerebrospinal fluid pressure. J Glaucoma. 2013;22(Suppl 5):S17–8.

    Article  PubMed  Google Scholar 

  61. Mitchell P, Lee AJ, Wang JJ, Rochtchina E. Intraocular pressure over the clinical range of blood pressure: blue mountains eye study findings. Am J Ophthalmol. 2005;140:131–2.

    Article  PubMed  Google Scholar 

  62. Xu L, Wang H, Wang Y, Jonas JB. Intraocular pressure correlated with arterial blood pressure. The Beijing Eye Study. Am J Ophthalmol. 2007a;144:461–2.

    Article  PubMed  Google Scholar 

  63. Samuels BC, Hammes NM, Johnson PL, Shekhar A, McKinnon SJ, Allingham RR. Dorsomedial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci. 2012;53:7328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Balaratnasingam C, Morgan WH, Hazelton ML, House PH, Barry CJ, Chan H, Cringle SJ, Yu DY. Value of retinal vein pulsation characteristics in predicting increased optic disc excavation. Br J Ophthalmol. 2007;91:441–4.

    Article  PubMed  Google Scholar 

  65. Jonas JB, Jonas SB, Jonas RA, Holbach L, Panda-Jonas S. Histology of the parapapillary region in high myopia. Am J Ophthalmol. 2011a;152:1021–9.

    Article  PubMed  Google Scholar 

  66. Jonas JB, Nangia V, Matin A, Sinha A, Kulkarni M, Bhojwani K. Intraocular pressure and associated factors. The Central India Eye and Medical Study. J Glaucoma. 2011b;20:405–9.

    Article  PubMed  Google Scholar 

  67. Kaufmann C, Bachmann LM, Robert YC, Thiel MA. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol. 2006;124:1104–8.

    Article  PubMed  Google Scholar 

  68. Wegner W. Neue Ergebnisse über die pulsatorischen Schwankungen des menschlichen Bulbus und seiner Hüllen. Arch Augenheilkd. 1930;102:1–32.

    Google Scholar 

  69. Silver DM, Geyer O. Pressure-volume relation for the living human eye. Curr Eye Res. 2000;20:115–20.

    Article  CAS  PubMed  Google Scholar 

  70. James CB, Trew DR, Clark K, Smith SE. Factors influencing the ocular pulse—axial length. Graefes Arch Clin Exp Ophthalmol. 1991;229:341–4.

    Article  CAS  PubMed  Google Scholar 

  71. Wang YX, Jonas JB, Wang N, You QS, Yang D, Xie XB, Xu L. Intraocular pressure and estimated cerebrospinal fluid pressure. The Beijing eye study 2011. PLoS One. 2014;9:e104267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Anderson DR, Grant WM. The influence of position on intraocular pressure. Investig Ophthalmol. 1973;12:204–12.

    CAS  Google Scholar 

  73. Baskaran M, Raman K, Ramani KK, Roy J, Vijaya L, Badrinath SS. Intraocular pressure changes and ocular biometry during Sirsasana (headstand posture) in yoga practitioners. Ophthalmology. 2006;113:1327–32.

    Article  PubMed  Google Scholar 

  74. Carlson KH, McLaren JW, Topper JE, Brubaker RF. Effect of body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci. 1987;28:1346–52.

    CAS  PubMed  Google Scholar 

  75. Gallardo MJ, Aggarwal N, Cavanagh HD, Whitson JT. Progression of glaucoma associated with the Sirsasana (headstand) yoga posture. Adv Ther. 2006;23:921–5.

    Article  PubMed  Google Scholar 

  76. Hirooka K, Shiraga F. Relationship between postural change of the intraocular pressure and visual field loss in primary open-angle glaucoma. J Glaucoma. 2003;12:379–82.

    Article  PubMed  Google Scholar 

  77. Jonas JB. Intraocular pressure during headstand. Ophthalmology. 2007;114:1791; author reply 1791

    Article  PubMed  Google Scholar 

  78. Magnaes B. Body position and cerebrospinal fluid pressure. Part 1: clinical studies on the effect of rapid postural changes. J Neurosurg. 1976a;44:687–97.

    Article  CAS  PubMed  Google Scholar 

  79. Magnaes B. Body position and cerebrospinal fluid pressure. Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg. 1976b;44:698–705.

    Article  CAS  PubMed  Google Scholar 

  80. Tarkkanen A, Leikola J. Postural variations of the intraocular pressure as measured with the Mackay-Marg tonometer. Acta Ophthalmol. 1967;45:569–75.

    Article  CAS  Google Scholar 

  81. Weinreb RN, Cook J, Friberg TR. Effect of inverted body position on intraocular pressure. Am J Ophthalmol. 1984;98:784–7.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Z, Wang X, Jonas JB, Wang H, Zhang X, Peng X, Ritch R, Tian G, Yang D, Li L, Li J, Wang N. Valsalva manoeuver, intraocular pressure, cerebrospinal fluid pressure, optic disc topography: Beijing Intracranial and Intraocular Pressure Study. Acta Ophthalmol. 2014;92:e475–80.

    Article  PubMed  Google Scholar 

  83. Schuman JS, Massicotte EC, Connolly S, Hertzmark E, Mukherji B, Kunen MZ. Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology. 2000;107:127–33.

    Article  CAS  PubMed  Google Scholar 

  84. Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263:819–27.

    Article  PubMed  Google Scholar 

  85. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A, Phillips JL, Tran D, Lipsky W, Choi J, Stern C, Kuyumjian R, Polk JD. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118:2058–69.

    Article  PubMed  Google Scholar 

  86. Mader TH, Gibson CR, Pass AF, Lee AG, Killer HE, Hansen HC, Dervay JP, Barratt MR, Tarver WJ, Sargsyan AE, Kramer LA, Riascos R, Bedi DG, Pettit DR. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol. 2013;33:249–55.

    Article  PubMed  Google Scholar 

  87. Salman MS. Can intracranial pressure be measured non-invasively? Lancet. 1997;350:1367.

    Article  CAS  PubMed  Google Scholar 

  88. Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Siesky B, Harris A. Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma. Acta Ophthalmol. 2014;93(1):9–15. https://doi.org/10.1111/aos.12502. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  89. Hawthorne C, Piper I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol. 2014;5:121.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zeng T, Gao L. Management of patients with severe traumatic brain injury guided by intraventricular intracranial pressure monitoring: a report of 136 cases. Chin J Traumatol. 2010;13:146–51.

    PubMed  Google Scholar 

  91. Bauerle J, Nedelmann M. Sonographic assessment of the optic nerve sheath in idiopathic hypertension. J Neurol. 2011;258:2014–9.

    Article  PubMed  Google Scholar 

  92. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt Ll. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62:45–51.

    Article  PubMed  Google Scholar 

  93. Chacón M, Pardo C, Puppo C, Curilem M, Landerretche J. Non-invasive intracranial pressure estimation using support vector machine. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:996–9.

    Google Scholar 

  94. Potgieter DW, Kippin A, Ngu F, McKean C. Can accurate ultrasonographic measurement of the optic nerve sheath diameter (a non-invasive measure of intracranial pressure) be taught to novice operators in a single training session? Anaesth Intensive Care. 2011;39:95–100.

    Article  CAS  PubMed  Google Scholar 

  95. Ragauskas A, Daubaris G, Dziugys A, Azelis V, Gedrimas V. Innovative non-invasive method for absolute intracranial pressure measurement without calibration. Acta Neurochir Suppl. 2005;95:357–61.

    Article  CAS  PubMed  Google Scholar 

  96. Ragauskas A, Matijosaitis V, Zakelis R, Petrikonis K, Rastenyte D, Piper I, Daubaris G. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology. 2012;78:1684–91.

    Article  CAS  PubMed  Google Scholar 

  97. Ragauskas A, Bartusis L, Piper I, Zakelis R, Matijosaitis V, Petrikonis K, Rastenyte D. Improved diagnostic value of a TCD-based non-invasive ICP measurement method compared with the sonographic ONSD method for detecting elevated intracranial pressure. Neurol Res. 2014;36:607–14.

    Article  PubMed  Google Scholar 

  98. Tain RW, Alperin N. Noninvasive intracranial compliance from MRI-based measurements of transcranial blood and CSF flows: indirect versus direct approach. IEEE Trans Biomed Eng. 2009;56:544–51.

    Article  PubMed  Google Scholar 

  99. Xie XB, Zhang XJ, Fu J, Wang H, Jonas JB, Peng X, Tian G, Xian J, Ritch R, Li L, Kang Z, Zhang S, Yang D, Wang N. Beijing iCOP Study Group: Intracranial pressure estimation by orbital subarachnoid space measurement. Crit Care. 2013;17:R162.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Xu P, Kasprowicz M, Bergsneider M, Hu X. Improved noninvasive intracranial pressure assessment with nonlinear kernel regression. IEEE Trans Inf Technol Biomed. 2010;14:971–8.

    Article  PubMed  Google Scholar 

  101. Klingerhofer J, Conrad B, Benecke R, Sander D. Intracranial flow patterns at increasing intracranial pressure. Klin Wochenschr. 1987;65:542–5.

    Article  Google Scholar 

  102. Voulgaris SG, Partheni M, Kaliora H, Haftouras N, Pessach IS, Polyzoidis KS. Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma. Med Sci Monit. 2005;11:CR49–52.

    PubMed  Google Scholar 

  103. Behrens N, Lenfeldt N, Ambarki K, Siesjo P, Peter JC. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66:1050–7.

    Article  PubMed  Google Scholar 

  104. Brandi G, Béchir M, Sailer S, Haberthür C, Stocker R, Stover JF. Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury. Acta Neurochir. 2010;152:965–72.

    Article  PubMed  Google Scholar 

  105. Figaji AA, Zwane E, Fieggen AG, Siesjo P, Peter JC. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol. 2009;72:389–94.

    Article  PubMed  Google Scholar 

  106. Czonsnyka M. Pulsatility index. J Neurosurg. 2001;94:685–6.

    Google Scholar 

  107. Lang EW, Paulat K, Witte C, Zolondz J, Mehdorn HM. Noninvasive intracranial compliance monitoring: technical note and clinical results. J Neurosurg. 2003;98:214–8.

    Article  PubMed  Google Scholar 

  108. Reid A, Marchbanks RJ, Burge DM, Martin AM, Bateman DE, Pickard JD, Brightwell AP. The relationship between intracranial pressure and tympanic membrane displacement. Br J Audiol. 1990;24:123–9.

    Article  CAS  PubMed  Google Scholar 

  109. Shimbles S, Dodd C, Banister K, Mendelow AD, Chambers IR. Clinical comparison of tympanic membrane displacement with invasive ICP measurements. Acta Neurochir Suppl. 2005;95:197–9.

    Article  CAS  PubMed  Google Scholar 

  110. Jonas JB. Reproducibility of ophthalmodynamometric measurements of the central retinal artery and vein collapse pressure. Br J Ophthalmol. 2003b;87:577–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jonas JB. Ophthalmodynamometric assessment of the central retinal vein collapse pressure in eyes with retinal vein stasis or occlusion. Graefes Arch Clin Exp Ophthalmol. 2003d;241:367–70.

    Article  PubMed  Google Scholar 

  112. Morgan WH, Hazelton ML, Balaratnasingam C, Chan H, House PH, Barry CJ, Cringle SJ, Yu DY. The association between retinal vein ophthalmodynamometric force change and optic disc excavation. Br J Ophthalmol. 2009;93:594–6.

    Article  CAS  PubMed  Google Scholar 

  113. Pillunat KR, Ventzke S, Spoerl E, Furashova O, Stodtmeister R, Pillunat LE. Central retinal venous pulsation pressure in different stages of primary open-angle glaucoma. Br J Ophthalmol. 2014;98:1374–8.

    Article  PubMed  Google Scholar 

  114. Stodtmeister R, Oppitz T, Spoerl E, Haustein M, Boehm AG. Contact lens dynamometry: the influence of age. Invest Ophthalmol Vis Sci. 2010;51:6620–4.

    Article  PubMed  Google Scholar 

  115. Stodtmeister R, Ventzke S, Spoerl E, Boehm AG, Terai N, Haustein M, Pillunat LE. Enhanced pressure in the central retinal vein decreases the perfusion pressure in the prelaminar region of the optic nerve head. Invest Ophthalmol Vis Sci. 2013;54:4698–704.

    Article  PubMed  Google Scholar 

  116. Morgan WH, Hazelton ML, Azar SL, House PH, Yu DY, Cringle SJ, Balaratnasingam C. Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology. 2004;111:1489–94.

    Article  PubMed  Google Scholar 

  117. Motschmann M, Muller C, Kuchenbecker J. Ophthalmodynamometry: a reliable method for measuring intracranial pressure. Strabismus. 2001;9:13–6.

    Article  CAS  PubMed  Google Scholar 

  118. Querfurth H, Lieberman P, Arms S, Mundell S, Bennett M, van Horne C. Ophthalmodynamometry for ICP prediction and pilot test on the Mt. Everest. BMC Neurol. 2010;10:106.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37:1059–68.

    Article  PubMed  Google Scholar 

  120. Dubourg J, Messerer M, Karakitsos D, Rajajee V, Antonsen E, Javouhey E, Cammarata A, Cotton M, Daniel RT, Denaro C, Douzinas E, Dubost C, Berhouma M, Kassai B, Rabilloud M, Gullo A, Hamlat A, Kouraklis G, Mannanici G, Marill K, Merceron S, Poularas J, Ristagno G, Noble V, Shah S, Kimberly H, Cammarata G, Moretti R, Geeraerts T. Individual patient data systematic review and meta-analysis of optic nerve sheath diameter ultrasonography for detecting raised intracranial pressure: protocol of the ONSD research group. Syst Rev. 2013;2:62.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, Benhamou D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33:1704–11.

    Article  PubMed  Google Scholar 

  122. Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008;15:201–4.

    Article  PubMed  Google Scholar 

  123. Le A, Hoehn ME, Smith ME, Spentzas T, Schlappy D, Pershad J. Bedside sonographic measurement of optic nerve sheath diameter as a predictor of increased intracranial pressure in children. Ann Emerg. 2009;53:785–91.

    Article  Google Scholar 

  124. Moretti R, Pizzi B. Optic nerve ultrasound for detection of intracranial hypertension in intracranial hemorrhage patients: confirmation of previous findings in a different patient population. J Neurosurg Anesthesiol. 2009;21:16–20.

    Article  PubMed  Google Scholar 

  125. Moretti R, Pizzi B, Cassini F, Vivaldi N. Reliability of optic nerve ultrasound for the evaluation of patients with spontaneous intracranial hemorrhage. Neurocrit Care. 2009;11:406–10.

    Article  PubMed  Google Scholar 

  126. Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care. 2008;12:R67.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Strumwasser A, Kwan RO, Yeung L, Miraflor E, Ereso A, Castro-Moure F, Patel A, Sadjadi J, Victorino GP. Sonographic optic nerve sheath diameter as an estimate of intracranial pressure in adult trauma. J Surg Res. 2011;170:265–71.

    Article  PubMed  Google Scholar 

  128. Pinto LA, Vanderwalle E, Pronk A, Stalmans I. Intraocular pressure correlates with optic nerve sheath diameter in patients with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2012;250:1075–80.

    Article  Google Scholar 

  129. Jaggi GP, Miller NR, Flammer J, Weinreb RN, Remonda L, Killer HE. Optic nerve sheath diameter in normal-tension glaucoma patients. Br J Ophthalmol. 2012;96:53–6.

    Article  PubMed  Google Scholar 

  130. Jonas JB, Wang N, Wang YX, You QS, Yang D, Xu L. Ocular Hypertension: General characteristics and estimated cerebrospinal fluid pressure. The Beijing Eye Study 2011. PLoS One. 2014e;9:e100533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Berdahl JP, Fleischman D, Zaydlarova J, Stinnett S, Allingham RR, Fautsch MP. Body mass index has a linear relationship with cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2012;53:1422–7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ren R, Wang N, Zhang X, Tian G, Jonas JB. Cerebrospinal fluid pressure correlated with body mass index. Graefes Arch Clin Exp Ophthalmol. 2012;250:445–6.

    Article  PubMed  Google Scholar 

  133. Hayreh SS, Jonas JB. Optic disc morphology after arteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:1586–94.

    Article  CAS  PubMed  Google Scholar 

  134. Jonas JB, Budde WM. Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects. Prog Retin Eye Res. 2000;19:1–40.

    Article  CAS  PubMed  Google Scholar 

  135. Jonas JB, Xu L. Optic disc morphology in eyes after nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 1993;34:2260–5.

    CAS  PubMed  Google Scholar 

  136. Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, Panda-Jonas S. Parapapillary atrophy: Histological gamma zone and delta zone. PLoS One. 2012b;7:e47237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of parapapillary atrophy: Beta zone and gamma zone. Invest Ophthalmol Vis Sci. 2013;54:2013–8.

    Article  PubMed  Google Scholar 

  138. De Moraes CG, Ketner S, Teng CC, Ehrlich JR, Raza AS, Liebmann JM, Ritch R, Hood DC. Beta-zone parapapillary atrophy and multifocal visual evoked potentials in eyes with glaucomatous optic neuropathy. Doc Ophthalmol. 2011a;123:43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  139. De Moraes CG, Juthani VJ, Liebmann JM, Teng CC, Tello C, Susanna R Jr, Ritch R. Risk factors for visual field progression in treated glaucoma. Arch Ophthalmol. 2011b;129:562–8.

    Article  PubMed  Google Scholar 

  140. Teng CC, De Moraes CG, Prata TS, Tello C, Ritch R, Liebmann JM. Beta-Zone parapapillary atrophy and the velocity of glaucoma progression. Ophthalmology. 2010;117:909–15.

    Article  PubMed  Google Scholar 

  141. Teng CC, De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R, Liebmann JM. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology. 2011;118:2409–13.

    Article  PubMed  Google Scholar 

  142. Xu L, Wang Y, Yang H, Jonas JB. Differences in parapapillary atrophy between glaucomatous and normal eyes: The Beijing Eye Study. Am J Ophthalmol. 2007b;144:541–6.

    Article  PubMed  Google Scholar 

  143. Frisén L, Claesson M. Narrowing of the retinal arterioles in descending optic atrophy. A quantitative clinical study. Ophthalmology. 1984;91:1342–6.

    Article  PubMed  Google Scholar 

  144. Kawasaki R, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Mitchell P. Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology. 2013;120:84–90.

    Article  PubMed  Google Scholar 

  145. Jonas JB, Schiro D. Localized retinal nerve fiber layer defects in nonglaucomatous optic nerve atrophy. (Brief Report). Graefes Arch Clin Exp Ophthalmol. 1994;232:759.

    Article  CAS  PubMed  Google Scholar 

  146. Jonas JB, Budde WM. Optic cup deepening spatially correlated with optic nerve damage in focal normal-pressure glaucoma. J Glaucoma. 1999;8:227–31.

    Article  CAS  PubMed  Google Scholar 

  147. Jonas JB, Hayreh SS. Optic disc morphology in experimental central retinal artery occlusion in rhesus monkeys. Am J Ophthalmol. 1999a;127:523–30.

    Article  CAS  PubMed  Google Scholar 

  148. Jonas JB, Hayreh SS. Localized retinal nerve fiber layer defects in chronic high-pressure experimental glaucoma in rhesus monkeys. Br J Ophthalmol. 1999b;83:1291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hayreh SS, Jonas JB. Optic disc and retinal nerve fiber layer damage following transient central retinal artery occlusion. An experimental study in rhesus monkeys. Am J Ophthalmol. 2000a;129:786–95.

    Article  CAS  PubMed  Google Scholar 

  150. Hayreh SS, Jonas JB. Appearance of the optic disk and retinal nerve fiber layer in atherosclerosis and arterial hypertension: an experimental study in rhesus monkeys. Am J Ophthalmol. 2000b;130:91–6.

    Article  CAS  PubMed  Google Scholar 

  151. Hayreh SS, Jonas JB, Zimmerman MB. Parapapillary chorioretinal atrophy in chronic high-pressure experimental glaucoma in rhesus monkeys. Invest Ophthalmol Vis Sci. 1998;39:2296–303.

    CAS  PubMed  Google Scholar 

  152. Jonas JB, Nguyen NX, Naumann GOH. Optic disc morphometry in “simple” optic nerve atrophy. Acta Ophthalmol. 1989c;67:199–203.

    Article  CAS  Google Scholar 

  153. Hayreh SS. Optic disc edema in raised intracranial pressure. V Pathogenesis. Arch Ophthalmol. 1977;95:1553–65.

    Article  CAS  PubMed  Google Scholar 

  154. Hayreh SS. Cerebrospinal fluid pressure and glaucomatous optic disc cupping. Graefes Arch Clin Exp Ophthalmol. 2009;247:721–4.

    Article  PubMed  Google Scholar 

  155. Morgan WH, Cringle SJ, Balaratnasingam C, Yu DY. Impaired cerebrospinal fluid circulation and its relationship to glaucoma. Clin Exp Ophthalmol. 2008b;36:802–3.

    Article  PubMed  Google Scholar 

  156. Burgoyne CF, Morrison JC. The anatomy and pathophysiology of the optic nerve head in glaucoma. J Glaucoma. 2001;10(5 Suppl 1):S16–8.

    Article  CAS  PubMed  Google Scholar 

  157. Fleischman D, Berdahl J, Stinnett SS, Fautsch MP, Allingham RR. Cerebrospinal fluid pressure (CSFP) trends in diseases associated with primary open angle glaucoma (POAG). Acta Ophthalmol. 2015;33(3):e234–6. https://doi.org/10.1111/aos.12551. [Epub ahead of print]

    Article  Google Scholar 

  158. Jonas JB. Intraocular pressure during weight lifting. Arch Ophthalmol. 2008;126:287–8. Comment on Arch Ophthalmol. 2006; 124:1251-1254

    Article  PubMed  Google Scholar 

  159. Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011a;89:e142–8.

    Article  PubMed  Google Scholar 

  160. Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011b;249:1057–63.

    Article  PubMed  Google Scholar 

  161. Shin DH. Influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36:2163–4.

    CAS  PubMed  Google Scholar 

  162. Wostyn P, Audenaert K, De Deyn PP. High occurrence rate of glaucoma among patients with normal pressure hydrocephalus. J Glaucoma. 2010;19:225–6.

    Article  PubMed  Google Scholar 

  163. Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. Senescent changes in cerebrospinal fluid circulatory physiology and their role in the pathogenesis of normal-tension glaucoma. Am J Ophthalmol. 2013;156:5–14.e2.

    Article  PubMed  Google Scholar 

  164. Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. The role of low intracranial pressure in the development of glaucoma in patients with Alzheimer’s disease. Prog Retin Eye Res. 2014;39:107–8.

    Article  PubMed  Google Scholar 

  165. Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. Intracranial pressure fluctuations: a potential risk factor for glaucoma? Acta Ophthalmol. 2015;93(1):e83–4. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  166. Gilland O. Normal cerebrospinal-fluid pressure. N Engl J Med. 1969;280:904–5.

    CAS  PubMed  Google Scholar 

  167. Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol. 1997;115:423–6.

    Article  CAS  PubMed  Google Scholar 

  168. Yang H, Downs JC, Bellezza A, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci. 2007;48:5068–84.

    Article  PubMed  Google Scholar 

  169. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008a;115:763–8.

    Article  PubMed  Google Scholar 

  170. Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008b;49:5412–8.

    Article  PubMed  Google Scholar 

  171. Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, Yang D, Xie X, Panda-Jonas S. Trans-lamina cribrosa pressure difference and open-angle glaucoma: The Central India Eye and Medical Study. PLoS One. 2013;8:e82284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Jonas JB, Wang N, Wang S, Wang YX, You QS, Yang D, Wei WB, Xu L. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension. The Beijing Eye Study. Am J Hypertens. 2014c;27:1170–8.

    Article  CAS  PubMed  Google Scholar 

  173. Jonas JB, Wang N, Xu J, Wang YX, You QS, Yang D, Xie XB, Xu L. Diabetic retinopathy and estimated cerebrospinal fluid pressure. The Beijing Eye Study 2011. PLoS One. 2014d;9:e96273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Jonas JB, Wang N, Wang YX, You QS, Xie XB, Yang D, Xu L. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma: The Beijing Eye Study 2011. Acta Ophthalmol. 2014f; https://doi.org/10.1111/aos.12480. [Epub ahead of print]

  175. Jonas JB, Nangia V, Gupta R, Agarwal S, Matin A, Khare A, Bhate K, Sinha A, Bhojwani K, Kulkarni M, Panda-Jonas S. Retinal nerve fibre layer cross-sectional area, neuroretinal rim area and body mass index. Acta Ophthalmol. 2014g;92:e194–9.

    Article  PubMed  Google Scholar 

  176. Xu L, Wang YX, Wang S, Jonas JB. Neuroretinal rim area and body mass index. PLoS One. 2012;7:e30104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Qu Y, Wang YX, Xu L, Zhang L, Zhang J, Zhang J, Wang L, Yang L, Yang A, Wang J, Jonas JB. Glaucoma-like optic neuropathy in patients with intracranial tumors. Acta Ophthalmol. 2011;89:E428–33.

    Article  PubMed  Google Scholar 

  178. Wang YX, Xu L, Lu W, Liu FJ, Qu YZ, Wang J, Jonas JB. Parapapillary atrophy in patients with intracranial tumors. Acta Ophthalmol. 2013;91:521–5.

    Article  PubMed  Google Scholar 

  179. Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefánsson E. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–93.

    Article  PubMed  Google Scholar 

  180. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y, Tajimi Study Group, Japan Glaucoma Society. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–8.

    PubMed  Google Scholar 

  181. Shiose Y, Kitazawa Y, Tsukahara S, Akamatsu T, Mizokami K, Futa R, Katsushima H, Kosaki H. Epidemiology of glaucoma in Japan--a nationwide glaucoma survey. Jpn J Ophthalmol. 1991;35:133–55.

    CAS  PubMed  Google Scholar 

  182. Li J, Fang L, Killer HE, Flammer J, Meyer P, Neutzner A. Meningothelial cells as part of the central nervous system host defence. Biol Cell. 2013a;105:304–15.

    Article  CAS  PubMed  Google Scholar 

  183. Li Z, Yang DY, Lu Y, Liu DC, Jia JP, Jonas JB, Wang NL. Intracranial hypotension and co-existent normal-pressure glaucoma: the Beijing intracranial and intraocular pressure study. Chin Med J. 2013b;126:1588–9.

    PubMed  Google Scholar 

  184. Killer HE. Production and circulation of cerebrospinal fluid with respect to the subarachnoid space of the optic nerve. J Glaucoma. 2013a;22(Suppl 5):S8–10.

    Article  PubMed  Google Scholar 

  185. Jaggi GP, Mironov A, Huber AR, Killer HE. Optic nerve compartment syndrome in a patient with optic nerve sheath meningioma. Eur J Ophthalmol. 2007;17:454–8.

    Article  CAS  PubMed  Google Scholar 

  186. Killer HE. Compartment syndromes of the optic nerve and open-angle glaucoma. J Glaucoma. 2013b;22(Suppl 5):S19–20.

    Article  PubMed  Google Scholar 

  187. Killer HE, Jaggi GP, Miller NR, Huber AR, Landolt H, Mironov A, Meyer P, Remonda L. Cerebrospinal fluid dynamics between the basal cisterns and the subarachnoid space of the optic nerve in patients with papilloedema. Br J Ophthalmol. 2011;95:822–7.

    Article  PubMed  Google Scholar 

  188. Killer HE, Laeng HR, Groscurth P. Lymphatic capillaries in the meninges of the human optic nerve. J Neuroophthalmol. 1999;19:222–8.

    CAS  PubMed  Google Scholar 

  189. Killer HE, Jaggi G, Miller NR, Flammer J, Meyer P. Does immunohistochemistry allow easy detection of lymphatics in the optic nerve sheath? J Histochem Cytochem. 2008a;56:1087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xin X, Fan B, Flammer J, Miller NR, Jaggi GP, Killer HE, Meyer P, Neutzner A. Meningothelial cells react to elevated pressure and oxidative stress. PLoS One. 2011;6:e20142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jaggi GP, Harlev M, Ziegler U, Dotan S, Miller NR, Killer HE. Cerebrospinal fluid segregation optic neuropathy: an experimental model and a hypothesis. Br J Ophthalmol. 2010;94:1088–93.

    Article  PubMed  Google Scholar 

  192. Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR. The optic nerve: a new window into cerebrospinal fluid composition? Brain. 2006;129:1027–30.

    Article  CAS  PubMed  Google Scholar 

  193. Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain. 2007;130:514–20.

    Article  CAS  PubMed  Google Scholar 

  194. Killer HE, Jaggi GP, Flammer J, Miller NR. Is open-angle glaucoma caused by impaired cerebrospinal fluid circulation: around the optic nerve? Clin Exp Ophthalmol. 2008b;36:308–11.

    Article  PubMed  Google Scholar 

  195. Killer HE, Miller NR, Flammer J, Meyer P, Weinreb RN, Remonda L, Jaggi GP. Cerebrospinal fluid exchange in the optic nerve in normal-tension glaucoma. Br J Ophthalmol. 2012;96:544–8.

    Article  PubMed  Google Scholar 

  196. Hedges TR, Zaren HA. The relationship of optic nerve tissue pressure to intracranial and systemic arterial pressure. Am J Ophthalmol. 1973;75:90–8.

    Article  CAS  PubMed  Google Scholar 

  197. Rios-Montenegro EN, Anderson DR, Noble JD. Intracranial pressure and ocular hemodynamics. Arch Ophthalmol. 1973;89:52–8.

    Article  CAS  PubMed  Google Scholar 

  198. Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, Chen WW, Li Z, Sang J, Zhang Z, Liu S, Cao Y, Xie X, Ren R, Lu Q, Weinreb RN, Wang N. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55:3067–73.

    Article  PubMed  Google Scholar 

  199. Jonas JB, Wang N, Wang YX, You QS, Yang D, Xie XB, Xu L. Incident retinal vein occlusions and estimated cerebrospinal fluid pressure. The Beijing Eye Study. Acta Ophthalmol. 2015b;93(7):e522–6.

    Article  PubMed  Google Scholar 

  200. Gupta A, Raman R, Mohana K, Kulothungan V, Sharma T. Communications between intraretinal and subretinal space on optical coherence tomography of neurosensory retinal detachment in diabetic macular edema. Oman J Ophthalmol. 2013;6:183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Gupta A, Raman R, Kulothungan V, Sharma T. Association of systemic and ocular risk factors with neurosensory retinal detachment in diabetic macular edema: a case-control study. BMC Ophthalmol. 2014a;14:47.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Gupta P, Sidhartha E, Girard MJ, Mari JM, Wong TY, Cheng CY. A simplified method to measure choroidal thickness using adaptive compensation in enhanced depth imaging optical coherence tomography. PLoS One. 2014b;9:e96661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Paques M, Massin P, Sahel JA, Gaudric A, Bergmann JF, Azancot S, Lévy BI, Vicaut E. Circadian fluctuations of macular edema in patients with morning vision blurring: correlation with arterial pressure and effect of light deprivation. Invest Ophthalmol Vis Sci. 2005;46:4707–11.

    Article  PubMed  Google Scholar 

  204. Tan CS, Ouyang Y, Ruiz H, Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:261–6.

    Article  PubMed  Google Scholar 

  205. Toyokawa N, Kimura H, Fukomoto A, Kuroda S. Difference in morning and evening choroidal thickness in Japanese subjects with no chorioretinal disease. Ophthalmic Surg Lasers Imaging. 2012;43:109–14.

    Article  PubMed  Google Scholar 

  206. Klein R, Klein BE, Moss SE, Wong TY, Hubbard L, Cruickshanks KJ, Palta M. The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: XIX: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Ophthalmol. 2004;122:76–83.

    Article  PubMed  Google Scholar 

  207. Klein R, Klein BE, Moss SE, Wong TY, Sharrett AR. Retinal vascular caliber in persons with type 2 diabetes: the Wisconsin Epidemiological Study of Diabetic Retinopathy: XX. Ophthalmology. 2006;113:1488–98.

    Article  PubMed  Google Scholar 

  208. Klein R, Klein BE, Moss SE, Wong TY. Retinal vessel caliber and microvascular and macrovascular disease in type 2 diabetes: XXI: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology. 2007;114:1884–92.

    Article  PubMed  Google Scholar 

  209. Stodtmeister R. The pulsation and the pressure of the central retinal vein and their relation to glaucoma damage and therapy. Klin Monatsbl Augenheilkd. 2008;225:632–6.

    Article  CAS  PubMed  Google Scholar 

  210. Cox SN, Hay E, Bird AC. Treatment of chronic macular edema with acetazolamide. Arch Ophthalmol. 1988;106:1190–5.

    Article  CAS  PubMed  Google Scholar 

  211. Rosenbloom AL. Intracerebral crises during treatment of diabetic ketoacidosis. Diabetes Care. 1990;13:22–33.

    Article  CAS  PubMed  Google Scholar 

  212. Srinivasan S, Benneyworth B, Garton HJ, Hervey-Jumper SL, Raimer PL, Odetola FO, Han YY. Intracranial pressure/cerebral perfusion pressure-targeted management of life-threatening intracranial hypertension complicating diabetic ketoacidosis-associated cerebral edema: a case report. Pediatr Emerg Care. 2012;28:696–8.

    Article  PubMed  Google Scholar 

  213. Van der Meulen JA, Klip A, Grinstein S. Possible mechanism for cerebral oedema in diabetic ketoacidosis. Lancet. 1987;2(8554):306–8.

    Article  PubMed  Google Scholar 

  214. Wood EG, Go-Wingkun J, Luisiri A, Aceto T Jr. Symptomatic cerebral swelling complicating diabetic ketoacidosis documented by intraventricular pressure monitoring: survival without neurologic sequela. Pediatr Emerg Care. 1990;6:285–8.

    Article  CAS  PubMed  Google Scholar 

  215. Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83.

    Google Scholar 

Download references

Acknowledgments

The text and figures of this manuscript have appeared previously in a Progress in Retinal and Eye Research review of our work: Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83 [215]. They have been used with permission and edited for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jost B. Jonas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jonas, J.B., Wang, N. (2019). Facts and Myths of Cerebrospinal Fluid Pressure for the Physiology of the Eye. In: Wang, N. (eds) Intraocular and Intracranial Pressure Gradient in Glaucoma. Advances in Visual Science and Eye Diseases, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-13-2137-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2137-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2136-8

  • Online ISBN: 978-981-13-2137-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics