Skip to main content

Rainfall Characteristics over the Northwest Himalayan Region

  • Chapter
  • First Online:
Remote Sensing of Northwest Himalayan Ecosystems

Abstract

The Northwest Himalayan (NWH) region constitutes a unique geographical setting with a complex interaction between atmosphere and topography. The region is also the birthplace of many perennial rivers like the Ganges, Yamuna, Indus, Chenab, etc. and their various tributaries. The precipitation processes in the region dominate not only the geomorphological processes and terrestrial hydrological cycle but are also highly relied upon for food and water availability, thus, playing a decisive role in the socio-economic survival of millions of people inhabiting the basins of these rivers. The precipitation pattern in this region is mainly controlled by two major atmospheric circulations: Indian summer monsoon (ISM) lasting from June to September and Western disturbances during the winter season from December to March. While the Eastern Himalayan ranges receive precipitation mainly through monsoon rains, the NWH receives both rainfall (liquid) and snow (solid) in summer and winter season, respectively. The monsoon rains contribute roughly 75–80% to the annual precipitation of the NWH and closely control the river discharge in the basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpert P. 1986. Mesoscale indexing of the orographic precipitation over high mountains. Journal of Climate and Applied Meteorology 25: 532–545.

    Article  Google Scholar 

  • Anders AM, Roe GH, Hallet B, Montgomery DR, Finnegan NJ, Putkonen J. 2006. Spatial patterns of precipitation and topography in the Himalaya. Geological Society of America Special Pa: 39–53. DOI: https://doi.org/10.1130/2006.2398(03).

  • Barros AP. 2004. On the Space-Time Patterns of Precipitation in the Himalayan range: a Synthesis. GAME CD ROM Publ. No. 11, T8APB19Oct04100318.

    Google Scholar 

  • Barros AP, Kim G, Williams E, Nesbitt SW. 2004. Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Natural Hazards and Earth System Science 4(1): 29–51. DOI: https://doi.org/10.5194/nhess-4-29-2004.

    Article  Google Scholar 

  • Barros AP, Joshi M, Putkonen J, Burbank DW. 2000. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophysical Research Letters 27(22): 3683–3686. DOI: https://doi.org/10.1029/2000GL011827.

    Article  Google Scholar 

  • Barry RG. 2008. Mountain Weather and Climate, 3rd edn. Cambridge University Press: New York, NY. ISBN: 13-978-0-511-41367-4

    Book  Google Scholar 

  • Basistha A, Arya DS, Goel NK. 2007. Spatial Distribution of Rainfall in Indian Himalayas – A Case Study of Uttarakhand Region. Water Resources Management 22(10): 1325–1346. DOI: https://doi.org/10.1007/s11269-007-9228-2.

    Article  Google Scholar 

  • Basu BK. 2007. Diurnal Variation in Precipitation over India during the Summer Monsoon Season: Observed and Model Predicted. Monthly Weather Review 135(6): 2155–2167. DOI: https://doi.org/10.1175/MWR3355.1.

    Article  Google Scholar 

  • Bharti V, Singh C. 2015a. Diurnal variations of seasonal rainfall over the state of Himachal Pradesh as observed by satellite data. ACRS 2015 - 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Proceedings.

    Google Scholar 

  • Bharti V, Singh C. 2015b. Influence of Elevation on Spatial and Diurnal Patterns of Orographic Rainfall : A Case Study of Uttarakhand. Journal of Basic and Applied Engineering Research 2(3): 202–205.

    Google Scholar 

  • Bharti V, Singh C. 2015c. Characteristics of the spatiotemporal pattern of Extreme Rainfall event over the state of Uttarakhand , India. ICUC9 - 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment Characteristics.

    Google Scholar 

  • Bharti V, Singh C. 2015d. Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region. Journal of Geophysical Research: Atmospheres 120: 12458–12473. DOI: https://doi.org/10.1002/2015JD023779.

    Article  Google Scholar 

  • Bharti V, Singh C, Damen MCJ, Turkington TAR. 2014. Some aspects of spatial distribution of rainfall over Uttarakhand using satellite data. ISRS Proceedings 2014 :ISPRSTCVIII Mid-Symposium.

    Google Scholar 

  • Bharti V, Singh C, Ettema J, Turkington TAR. 2016. Spatiotemporal characteristics of extreme rainfall events over the Northwest Himalaya using satellite data. International Journal of Climatology. DOI: https://doi.org/10.1002/joc.4605.

    Article  Google Scholar 

  • Bhatt BC, Nakamura K. 2005. Characteristics of Monsoon Rainfall around the Himalayas Revealed by TRMM Precipitation Radar. Monthly Weather Review 133: 149–165.

    Article  Google Scholar 

  • Bhatt BC, Nakamura K. 2006. A climatological-dynamical analysis associated with precipitation around the southern part of the Himalayas. Journal of Geophysical Research D: Atmospheres 111(2): D02115. DOI: https://doi.org/10.1029/2005JD006197.

    Article  Google Scholar 

  • Biasutti M, Yuter SE, Burleyson CD, Sobel AH. 2011. Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Climate Dynamics 39(1–2): 239–258. DOI: https://doi.org/10.1007/s00382-011-1146-6.

    Article  Google Scholar 

  • Bookhagen B. 2010. Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya. Geomatics, Natural Hazards and Risk 1(1): 37–50. DOI: https://doi.org/10.1080/19475701003625737.

    Article  Google Scholar 

  • Bookhagen B, Burbank DW. 2006. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters 33(8): L08405. DOI: https://doi.org/10.1029/2006GL026037.

    Article  Google Scholar 

  • Chen S, Hong Y, Gourley JJ, Huffman GJ, Tian Y, Cao Q, Yong B, Kirstetter PE, Hu J, Hardy J, Li Z, Khan SI, Xue X. 2013. Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. Water Resources Research 49(12): 8174–8186. DOI: https://doi.org/10.1002/2012WR012795.

    Article  Google Scholar 

  • Chow F K, Wekker S F D and Snyder B J (eds.) (2013) Mountain Weather Research and Forecasting, Recent Progress and Current Challenges. Springer Atmospheric Sciences. ISBN 978-94-007-4098-3. DOI: https://doi.org/10.1007/978-94-007-4098-3.

    Book  Google Scholar 

  • Dai A. 2001. Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and Interannual Variations. Journal of Climate 14(6): 1092–1111. DOI: https://doi.org/10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2.

    Article  Google Scholar 

  • Das PK. 2002. Monsoons. National Book Trust. ISBN: 9788123711232.

    Google Scholar 

  • Dhar ON, Rakhecha PR. 1981. The effect of elevation on monsoon rainfall distribution in the Central Himalayas. Proc. Int. Symp. on Monsoon Dynamics. Cambridge University Press, pp. 253–260.

    Google Scholar 

  • Dinku T, Chidzambwa S, Ceccato P, Connor SJ, Ropelewski CF. 2008. Validation of high-resolution satellite rainfall products over complex terrain. International Journal of Remote Sensing 29(14): 4097–4110. DOI: https://doi.org/10.1080/01431160701772526.

    Article  Google Scholar 

  • Duckstein L, Fogel MM, Thames JL. 1973. Elevation effects on rainfall: A stochastic model. Journal of Hydrology 18(1): 21–35. DOI: https://doi.org/10.1016/0022-1694(73)90023-1.

    Article  Google Scholar 

  • Ebert E. 2007. Methods for verifying satellite precipitation estimates. In: Measuring Precipitation From Space—EURAINSAT and the Future, edited by V. Levizzani, P. Bauer, and F. J. Turk, pp. 345–356, Springer, Dordrecht, Netherlands

    Chapter  Google Scholar 

  • Francis PA, Gadgil S. 2006. Intense rainfall events over the west coast of India. Meteorology and Atmospheric Physics 94(1–4): 27–42. DOI: https://doi.org/10.1007/s00703-005-0167-2.

    Article  Google Scholar 

  • Gebregiorgis AS, Hossain F. 2015. How well can we estimate error variance of satellite precipitation data around the world? Atmospheric Research. Elsevier B.V. 154: 39–59. DOI: https://doi.org/10.1016/j.atmosres.2014.11.005.

    Article  Google Scholar 

  • Goswami BB, Mukhopadhyay P, Mahanta R, Goswami BN. 2010. Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. Journal of Geophysical Research 115(D12): D12114. DOI: https://doi.org/10.1029/2009JD012275.

    Article  Google Scholar 

  • Goswami BN, V. Venugopal, Sengupta D, Madhusoodanan MS, Xavier PK. 2006. Increasing Trend of Extreme Rain Events Over India in a Warming Environment. Science 314(December): 1442–1445.

    Article  Google Scholar 

  • Goswami P, Ramesh K V. 2007. Extreme Rainfall Events : Vulnerability Analysis for Disaster Management and Observation System Design. Current Science 94(8):1037–1044.

    Google Scholar 

  • Guhathakurta P, Sreejith OP, Menon PA. 2011. Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science. 120(3): 359–373.

    Article  Google Scholar 

  • Huang Y, Chen S, Cao Q, Hong Y, Wu B, Huang M, Qiao L, Zhang Z, Li Z, Li W, Yang X. 2013. Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy Rainfall Event of 21 July 2012. Water 6(1): 32–44. DOI: https://doi.org/10.3390/w6010032.

    Article  Google Scholar 

  • Huffman G. 2013. 3B42 Version 7 Web Description. [Available at http://trmm.gsfc.nasa.gov/3b42.html.]

  • Huffman GJ, Bolvin DT, Nelkin EJ,Adler RF. 2010. Highlights of Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA). In: Proceedings of the 5th International Precipitation Working Group Workshop, Hamburg, Germany, 11–15 October 2010.

    Google Scholar 

  • Jamandre C A, Narisma GT. 2013. Spatio-temporal validation of satellite-based rainfall estimates in the Philippines. Atmospheric Research. Elsevier B.V. 122: 599–608. DOI: https://doi.org/10.1016/j.atmosres.2012.06.024.

    Article  Google Scholar 

  • Houze RA. 2012. Orographic effects on precipitating clouds. Reviews of Geophysics 50(RG1001): 1–47. DOI: https://doi.org/10.1029/2011RG000365.1.

  • Kelkar RR. 2007. Satellite meteorology. B S Publications ISBN: 81-7800-137-3.

    Google Scholar 

  • Kidder SQ, Vonder Haar TH. 1995. Satellite Meteorology An introduction, Academic Press, ISBN: 0-12-406430-2.

    Google Scholar 

  • Krajewski W. 2007. Ground networks: Are we doing the right things?, in Measuring Precipitation From Space—EURAINSAT and the Future, edited by V. Levizzani, P. Bauer, and F. J. Turk, pp. 403–417, Springer, Dordrecht, Netherlands.

    Chapter  Google Scholar 

  • Krishnamurthy CKB, Lall U, Kwon H-H. 2009. Changing Frequency and Intensity of Rainfall Extremes over India from 1951 to 2003. Journal of Climate 22(18): 4737–4746. DOI: https://doi.org/10.1175/2009JCLI2896.1.

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J. 1998. The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology 15(3): 809–817. DOI: https://doi.org/10.1016/0273-1177(94)90210-0.

    Article  Google Scholar 

  • Lang TJ, Barros AP. 2002. An Investigation of the Onsets of the 1999 and 2000 Monsoons in Central Nepal. Mon.Wea. Rev. 130: 1299–1316.

    Article  Google Scholar 

  • Lensky I, Levizzani V. 2008. Estimation of precipitation from space-based platforms. Precipitation: advances in measurement, estimation, and prediction 195–217. DOI: https://doi.org/10.1007/978-3-540-77655-0.

    Google Scholar 

  • Levizzani V. 2009. Satellite Clouds and Precipitation Observations for Meteorology and Climate. In: Sorooshian S et al (ed) Hydrological Modelling and the Water Cycle. Springer Science+Business Media B.V., 49–68.

    Google Scholar 

  • Liou KN. 2005. Cirrus clouds and climate. Yearbook Sci. Technol., McGraw-Hill. 51–53.

    Google Scholar 

  • Liu X, Bai A, Liu C. 2009. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations. Environmental Research Letters 4(4): 045203. DOI: https://doi.org/10.1088/1748-9326/4/4/045203.

    Article  Google Scholar 

  • Malik N, Bookhagen B, Marwan N, Kurths J. 2011. Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Climate Dynamics 39(3–4): 971–987. DOI: https://doi.org/10.1007/s00382-011-1156-4.

    Article  Google Scholar 

  • Mao JY, Wu GX. 2012. Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data. Science China Earth Sciences 55(4): 554–566. DOI: https://doi.org/10.1007/s11430-011-4315-x.

    Article  Google Scholar 

  • May W. 2004. Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901–1989. Global and Planetary Change 44: 83–105. DOI: https://doi.org/10.1016/j.gloplacha.2004.06.007.

    Article  Google Scholar 

  • Medina S, Houze R A., Kumar A, Niyogi D. 2010. Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quarterly Journal of the Royal Meteorological Society 136(648): 593–616. DOI: https://doi.org/10.1002/qj.601.

    Article  Google Scholar 

  • Müller MF, Thompson SE. 2013. Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal. Advances in Water Resources 60: 121–134. DOI: https://doi.org/10.1016/j.advwatres.2013.08.004.

    Article  Google Scholar 

  • Nandargi S, Dhar ON. 2011. Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrological Sciences Journal 56(6): 930–945. DOI: https://doi.org/10.1080/02626667.2011.595373.

    Article  Google Scholar 

  • Nandargi S, Dhar ON. 2012. Extreme Rainstorm Events over the Northwest Himalayas during 1875–2010. Journal of Hydrometeorology 13: 1383–1388. DOI: https://doi.org/10.1175/JHM-D-12-08.1.

    Article  Google Scholar 

  • National Space Development Agency of Japan Earth Observation Center (Feb 2001), TRMM Data Users Handbook. [Available at www.eorc. jaxa.jp/TRMM/document/text/handbook_e.pdf.]

  • Nesbitt SW, Zipser EJ. 2003. The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements. Journal of Climate 16: 1456–1475.

    Article  Google Scholar 

  • Pai DS, Sridhar L, Rajeevan M, Sreejith OP, Satbhai NS, Mukhopadyay B. 2014. Development of a new high spatial resolution ( 0 . 25 ° × 0 . 25 ° ) Long Period ( 1901–2010 ) daily gridded rainfall data set over India and its comparison with existing data sets over the region data sets of different spatial resolutions and time period. 1(January): 1–18.

    Google Scholar 

  • Pant GB, Kumar KR. 1997. Climates of South Asia. John Wiley & sons. ISBN: 0-471-94948-5.

    Google Scholar 

  • Petty GW, Krajewski WF. 1996. Satellite estimation of precipitation over land. Hydrological Sciences - Journal des Sciences Hydrologiques 41(4)(August): 433–452.

    Article  Google Scholar 

  • Prakash S, Mitra AK, Momin IM, Pai DS, Rajagopal EN, Basu S. 2015. Comparison of TMPA-3B42 Versions 6 and 7 Precipitation Products with Gauge-Based Data over India for the Southwest Monsoon Period. Journal of Hydrometeorology 16(1): 346–362. DOI: https://doi.org/10.1175/JHM-D-14-0024.1.

    Article  Google Scholar 

  • Qiao L, Hong Y, Chen S, Zou CB, Gourley JJ, Yong B. 2014. Performance assessment of the successive Version 6 and Version 7 TMPA products over the climate-transitional zone in the southern Great Plains, USA. Journal of Hydrology. Elsevier B.V. 513: 446–456. DOI: https://doi.org/10.1016/j.jhydrol.2014.03.040.

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Jaswal a. K. 2008a. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters 35(18): L18707. DOI: https://doi.org/10.1029/2008GL035143.

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B. 2005. Development of a High Resolution Daily Gridded Rainfall Data Set for the Indian Region. Met. Monograph Climatology No. 22/2005. National climate centre, India Meteorological Department.

    Google Scholar 

  • Rajeevan M, Gadgil S, Bhate J. 2008b. Active and Break Spells of the Indian Summer Monsoon. NCC Research Report 7. National climate centre, India Meteorogical Department.

    Google Scholar 

  • Romatschke U, Houze R A. 2011. Characteristics of Precipitating Convective Systems in the South Asian Monsoon. Journal of Hydrometeorology 12(1): 3–26. DOI: https://doi.org/10.1175/2010JHM1289.1.

    Article  Google Scholar 

  • Romatschke U, Medina S, Jr. Houze RA. 2010. Regional , Seasonal, and Diurnal Variations of Extreme Convection in the South Asian Region. Journal of climate 23(2004). DOI: https://doi.org/10.1175/2009JCLI3140.1.

    Article  Google Scholar 

  • Sahany S, Venugopal V, Nanjundiah RS. 2010. Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations. Journal of Geophysical Research 115(D02103). DOI: https://doi.org/10.1029/2009JD012644.

  • Sálek M, Cheze J, Handwerker J, Delobbe L, Uijlenhoet R. 2004. Radar techniques for identifying precipitation type and estimating quantity of precipitation. Document of COST Action 717, WG 1 Task WG 1-: 1–51.

    Google Scholar 

  • Shige S, Kida S, Ashiwake H, Kubota T, Aonashi K. 2013. Improvement of TMI rain retrievals in mountainous areas. Journal of Applied Meteorology and Climatology 52(1): 242–254. DOI: https://doi.org/10.1175/JAMC-D-12-074.1.

    Article  Google Scholar 

  • Shrestha D, Deshar R. 2014. Spatial Variations in the Diurnal Pattern of Precipitation over Nepal Himalayas. Nepal Journal of Science and Technology 15(2): 57–64. DOI: https://doi.org/10.1007/s00704-008-0045-1.

    Article  Google Scholar 

  • Shrestha D, Singh P, Nakamura K. 2012. Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. Journal of Geophysical Research: Atmospheres 117(D22): n/a–n/a. DOI: https://doi.org/10.1029/2012JD018140.

    Article  Google Scholar 

  • Singh P, Nakamura K. 2010. Diurnal variation in summer monsoon precipitation during active and break periods over central India and southern Himalayan foothills. Journal of Geophysical Research: Atmospheres 115(12). DOI: https://doi.org/10.1029/2009JD012794.

  • Sorooshian S, Aghakouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx JMH, Imam B, Kuligowski R, Skahill B, Skofronick-Jackson G. 2011. Advanced concepts on remote sensing of precipitation at multiple scales. Bulletin of the American Meteorological Society 92(10): 1353–1357. DOI: https://doi.org/10.1175/2011BAMS3158.1.

    Article  Google Scholar 

  • Srivastava G. 2008. Surface Meteorological Instruments and Measurement Practices, Atlantic Publishers Ltd., New Delhi.

    Google Scholar 

  • Sumner G. 1988. Precipitation Process and analysis. John Wiley & sons, ISBN: 0-471-90534-8

    Google Scholar 

  • Tang X, Chen B. 2006. Cloud types associated with the Asian summer monsoons as determined from MODIS / TERRA measurements and a comparison with surface observations. Geophysical Research Letters 33(February 2000): 2–5. DOI: https://doi.org/10.1029/2006GL026004.

    Article  Google Scholar 

  • Tank AMGK, Zwiers FW, Zhang X. 2009. Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation.

    Google Scholar 

  • TRMM Precipitation Radar Team. 2011. Tropical Rainfall Measuring Mission (TRMM) precipitation radar algorithm, Instruction manual for version 7, Tech. Rep., JAXA/NASA, 170 pp. [Available at http://www.eorc.jaxa.jp/TRMM/documents/PR_algorithm_product_information/ pr_manual/PR_Instruction_Manual_V7_L1.pdf.]

  • Varikoden H, Preethi B, Revadekar JV. 2012. Diurnal and spatial variation of Indian summer monsoon rainfall using tropical rainfall measuring mission rain rate. Journal of Hydrology. Elsevier B.V. 475: 248–258. DOI: https://doi.org/10.1016/j.jhydrol.2012.09.056.

    Article  Google Scholar 

  • Whiteman CD. 2000. Mountain Meteorology: Fundamentals and Applications, Oxford Univ. Press, Inc., New York.

    Google Scholar 

  • Wulf H, Bookhagen B, Scherler D. 2010. Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology 118(1–2): 13–21. DOI: https://doi.org/10.1016/j.geomorph.2009.12.003.

    Article  Google Scholar 

  • Xia T, Wang Z-J, Zheng H. 2015. Topography and Data Mining Based Methods for Improving Satellite Precipitation in Mountainous Areas of China. Atmosphere 6(8): 983–1005. DOI: https://doi.org/10.3390/atmos6080983.

    Article  Google Scholar 

  • Yin S, Li W, Chen D, Jeong JH, Guo W. 2011. Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Advances in Atmospheric Sciences 28(4): 725–734. DOI: https://doi.org/10.1007/s00376-010-9240-y.

    Article  Google Scholar 

  • Zardi D, Whiteman CD. 2012. Diurnal mountain wind systems. In: Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. Snyder Eds. Springer Atmospheric Sciences. DOI https://doi.org/10.1007/978-94-007-4098-32.

    Book  Google Scholar 

  • Zulkafli Z, Buytaert W, Onof C, Manz B, Tarnavsky E, Lavado W, Guyot J-L. 2014. A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean – Amazon River Basins. Journal of Hydrometeorology 15: 581–592. DOI: https://doi.org/10.1175/JHM-D-13-094.1.

    Article  Google Scholar 

Download references

Acknowledgements

Work presented in this chapter is a part of the EOAM project. Authors thankfully acknowledge the collaborator of this project Dr. V. Venugopal (CAOS, IISc Bangalore). Thanks are due to Head MASD, Dean (Academics) and Director IIRS for the support and encouragement. Ms. Sudeshna Purakait and Mr. Abhisek Das are thankfully acknowledged for generating Fig. 8.1 and Fig. 8.3, respectively, of this chapter. The TRMM 3B42V7 and TRMM 2B31 data used in this effort were acquired as part of the activities of NASA’s Science Mission Directorate and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Centre (DISC). SRTM DEM is a product of CGIAR-CSI (http://srtm.csi.cgiar.org/). We thank IMD for making the rainfall data set available for the research community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, C., Bharti, V. (2019). Rainfall Characteristics over the Northwest Himalayan Region. In: Navalgund, R., Kumar, A., Nandy, S. (eds) Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-2128-3_8

Download citation

Publish with us

Policies and ethics