Skip to main content

Hydrological Modelling in North Western Himalaya

  • Chapter
  • First Online:
Remote Sensing of Northwest Himalayan Ecosystems

Abstract

The Himalayas are one of the largest reservoirs of freshwater in the form of glaciers and snow outside the Polar region (Mani 1981). There are around 32,392 glaciers, covering an area of about 71,182 km2 in the Indian part of the Himalaya (SAC 2011). Among all, North Western Himalaya (NWH) has the largest area under seasonal and perennial snow cover. This snow/glacier melt contributes significantly to perennial rivers like the Ganga and the Indus during lean time. The Indus Basin is comprised of Chennab, Jhelum, Rawi, Satluj and Beas River subbasins, whereas Upper Ganga Basin is comprised of Bhagirathi, Alaknanda, Mandakini, Dhauliganga and Pindar subbasins. Moreover, these basins have huge hydropower potential, which is a matter of concern during lean period (Kasturirangan et al. 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla FA, Lettenmaier DP, Wood EF, Smith JA (1996) Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red river basin. J Geophys Res 101(D3):7449–7459

    Article  Google Scholar 

  • Aggarwal SP, Garg V, Gupta PK, Nikam BR, Thakur PK and Roy PS (2013) Runoff potential assessment over Indian landmass: A macro-scale hydrological modeling approach. Current Science 104(7):950–959

    Google Scholar 

  • Allen RG, Pereira L, Raes D, Smith M (1998) Crop Evapotranspiration. Food and Agriculture Organization (FAO) Publication 56. Rome, Italy: FAO of the United Nations

    Google Scholar 

  • Arkin PA (1979) The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Wea. Rev., 106: 1153–1171.

    Google Scholar 

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998). A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology 212(213): 213–229

    Article  Google Scholar 

  • Beven K (2001) Rainfall-Runoff modelling. The Primer. John Wiley and Sons, Chichester, UK, pp 1–360.

    Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The State and Fate of Himalayan Glaciers. Science 336(6079):310–314.

    Article  Google Scholar 

  • Cherkauer KA, Lettenmaier DP (1999) Hydrologic effects of frozen soils in the upper Mississippi River basin. J Geophys Res 104(D16):19599–19610

    Article  Google Scholar 

  • Cosby BJ, Hornberger GM, Clapp RB et al (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res. 20(6):682–690

    Article  Google Scholar 

  • Crawford NH, Linsley RK (1960) Computation of a synthetic streamflow record on a digital computer. Int. Assoc. Sci. Hydrol. Publication 51:526–538

    Google Scholar 

  • Dobhal DP, Gergan JT, Thayyen RJ (2004) Recession and morphogeometrical changes of Dokriani glacier (1962–1995), Garhwal Himalaya, India Current Science 86(5):692–696

    Google Scholar 

  • Dobson MC, Ulaby FT, Hallikainen MT, Elrayes MA (1985) Microwave dielectric behavior of wet soil, Part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing GE-23(1):35–46

    Article  Google Scholar 

  • Dumenil L, Todini E (1992) A rainfall-runoff scheme for use in the Hamburg climate model. In:O’Kane P (ed) Advances in Theoretical Hydrology, A Tribute to James Dooge, , European Geophysical Society Series on Hydrological Sciences 1, pp 129–157

    Chapter  Google Scholar 

  • Finn MP, Lewis M, Bosch DD, Giraldo M, Yamamoto K, Sullivan DG, Kincaid R, Luna R, Allam GK, Kvien C, Williams M(2011) Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data. GIScience & Remote Sensing 48(4):522–540. https://doi.org/10.2747/1548-1603.48.4.522

    Article  Google Scholar 

  • Ferraro RR (1997) Special Sensor Microwave Imager Derived Global Rainfall Estimates For Climatological Applications. J. Geophys. Res., 102:16715–16735.

    Article  Google Scholar 

  • Ferraro RR, Weng F, Grody NC, Zhao L (2000) Precipitation Characteristics Over Land From the NOAA-15 AMSU Sensor.Geophys. Res. Lett., 27(17):2669–2672.

    Article  Google Scholar 

  • French AN, Alfieri JG, Kustas WP, Prueger JH, Hipps LE, Chávez JL, Evett SR et al (2012) Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site. Adv Water Resour 50:91–105

    Article  Google Scholar 

  • Garg, V., Aggarwal, S.P., Gupta, P.K., Nikam, B.R., Thakur, P.K., Srivastav, S.K. and Senthil Kumar, A. (2017). Assessment of Land Use Land Cover Change Impact on Hydrological Regime of a Basin. Environmental Earth Sciences, 76, DOI: https://doi.org/10.1007/s12665-017-6976-z.

  • Gruber A (1973) Estimating rainfall in regions of active convection. J. Appl. Meteorol., 12:110–118.

    Article  Google Scholar 

  • Haubrock S, Chabrillat S, Kuhnert M, Hostert P, Kaufmann H (2008) Surface soil moisture quantification and validation based on hyperspectral data and field measurements. J Appl Remote Sens 2(1):023552-023552-26

    Article  Google Scholar 

  • Kashyap PS, Panda RK (2001) Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agricultural Water Management 50(1):9–25

    Article  Google Scholar 

  • Kasturirangan K, Navalgund RR and Ajai (2013) Observed changes in the Himalaya-Tibetan glacier. In Working group on Fate of Mountain Glaciers in the Anthropocene. Vatican City. Pontifical Academy of Sciences, Scripta Varia 118: 1–28 www.pas.va/content/dam/accademia/pdf/sv118/sv118-kasturirangan.pdf

  • Khanbilvardi R, Lakhankar T, Krakauer N, Nazari R, Powell A (2015) “Remote Sensing Data and Information for Hydrological Monitoring and Modeling” in Eslamian, S. (eds), Handbook of Engineering Hydrology, pp. 501–516.

    Google Scholar 

  • Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science 92(1):69–74

    Google Scholar 

  • Kummerow C, Hong Y, Olson WS, Yang S, Adler RF, McCollum J, Ferraro R, Petty G, Shin D-B, Wilheit TT (2001) The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors. J. Appl. Meteor. 40:1801–1820.

    Article  Google Scholar 

  • Lettenmaier DP (2001) Present and future of modeling global environmental change: toward integrated modeling. In: Matsuno T, Kida H (ed) Macroscale Hydrology: Challenges and Opportunities, pp 111–136

    Google Scholar 

  • Liang X (1994) A two-layer variable infiltration capacity land surface representation for general circulation models. Water Resour. Series TR140, Univ. of Washington, Seattle

    Google Scholar 

  • Liang X, Xie ZH (2003) Important factors in land-atmosphere interactions: surface runoff generations and interactions between surface and groundwater. Global Planet Change 38(1–2):101–114

    Article  Google Scholar 

  • Liang X, Lattenmaier DP, Wood EF, Burgess SJ (1994) A simple hydrologically based model of land surface, water, and energy flux for general circulation models. J Geophys Res 99(D7):14415–14428.

    Article  Google Scholar 

  • Liang, X., Lettenmaier, D.P., and Wood, E.F. 1996. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res. 101(D16):21403–21422.

    Article  Google Scholar 

  • Lievens, H., Tomer, S.K., Al Bitar, A., De Lannoy, G.J.M., Drusch, M., Dumedah, G., Hendricks Franssen, H.-J., Kerr, Y.H., Martens, B., Pan, M., Roundy, J.K., Vereecken, H., Walker, J.P., Wood, E.F., Verhoest, N.E.C., Pauwels, V.R.N. 2015. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sensing of Environment, 168, 146–162, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2015.06.025.

    Article  Google Scholar 

  • Lohmann, D., et al. (1996), A large scale horizontal routing model to be coupled to land surface parameterization schemes, Tellus (48A), 708–721.

    Article  Google Scholar 

  • Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D.P. 1998a. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences Journal 43(1):131–141.

    Article  Google Scholar 

  • Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D.P. 1998b. Regional scale hydrology: II. Application of the VIC-2L model to the Weser river, Germany. Hydrological Sciences Journal 43(1):143–158.

    Article  Google Scholar 

  • McVicar TR, Bierwirth PB (2001) Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. International Journal of Remote Sensing 22:2109–2128.

    Article  Google Scholar 

  • Mani, A. (1981). The Climate of the Himalaya, in: The Himalaya - Aspects of Change, edited by: Lall, J.S. and Moddie, A.D., Oxford University Press, Delhi, 3–15.

    Google Scholar 

  • Maurer, E.P., O’Donnell, G.M., Lettenmaier, D.P., and Roads J.O. 2001b. Evaluation of NCEP/NCAR reanalysis water and energy budgets using macroscale hydrologic model simulations. In: (Lakshmi V, Albertson J, Schaake J (eds) Land Surface Hydrology, Meteorology, and Climate: Observations and Modeling. Water Sci. Appl. 3:137–158, AGU, Washington, D. C., doi:https://doi.org/10.1029/WS003p0137.

    Chapter  Google Scholar 

  • Maurer, E.P., O’Donnell, G.M., Lettenmaier, D.P., and Roads, J.O. 2001a. Evaluation of the Land Surface Water Budget in NCEP/NCAR and NCEP/DOE Reanalyses using an Off-line Hydrologic Model. J Geophys Res. 106(D16):17,841-17,862.

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800.

    Article  Google Scholar 

  • Nagarajan R (2009) Drought Assessment. Copublished by Springer with Capital Publishing Company, New Delhi, India.

    Google Scholar 

  • Nijssen, B.N., Lettenmaier, D.P., Liang, X., Wetzel, S.W., and Wood, E.F. 1997. Streamflow simulation for continental-scale river basins. Water Resour Res. 33(4):711–724.

    Article  Google Scholar 

  • Nikam, V., Nikam, B.R., Garg, V., Thakur, P.K. and Aggarwal, S.P. 2015. Assimilation of Remote Sensing Derived Soil Moisture in Macroscale Hydrological Model. In proceedings of HYDRO-2015, IIT Roorkee, Uttarakhand, India during December 2015.

    Google Scholar 

  • Orellana B., Pechlivanidis I.G., McIntyre N., Wheater H.S. and Wagener T., (2008), A toolbox for the identification of parsimonious semi-distributed rainfall-runoff models: Application to the Upper Lee catchment, in iEMSs 2008: International Congress on Environmental Modelling and Software, 1, 670–677, 7–10 July, Barcelona, Spain.

    Google Scholar 

  • Pai D.S., Latha Sridhar, Rajeevan M., Sreejith O.P., Satbhai N.S. and Mukhopadhyay B., 2014: Development of a new high spatial resolution (0.25° X 0.25°)Long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region; MAUSAM, 65(1), 1–18.

    Google Scholar 

  • Pechlivanidis I.G., Jackson, B.M., Mcintyre, N.R. and Wheater, H.S. (2011). Catchment scale hydrological modeling a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in the technology and applications. Global NEST Journal, 13(3), 193–214.

    Google Scholar 

  • Petropoulos G, Carlson TN, Wooster MJ and Islam S (2009) A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Progress in Physical Geography 33(2): 224–250.

    Article  Google Scholar 

  • Rajeevan, M., Bhate, J., Kale, J.D. and Lal, B. (2005). Development of a high resolution daily gridded rainfall data for the Indian region. National Climate Centre, India Meteorological Department, Government of India Report, Met. Monograph Climatology No. 22/2005, Pune.

    Google Scholar 

  • Rawls WJ, Gimenez D, Grossman R (1998) Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Transactions of the ASABE 41(4):983–988.

    Article  Google Scholar 

  • Reynolds CA, Jackson TJ, Rawls WJ (2000) Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res. 36(12):3653–3662.

    Article  Google Scholar 

  • Senay, G.B., Bohms, S. and Verdin, J.P. 2012. Remote sensing of evapotranspiration for operational drought monitoring using principles of water and energy balance. In Remote Sensing of Drought: Innovative Monitoring Approaches, Eds. Wardlow, B.D., Anderson, M.C. and Verdin, J.P., pp 123–144, CRC Press, Taylor & Francis Group, Boca Raton.

    Google Scholar 

  • Senay, G.B., Velpuri, N.M., Bohms, S., Budde, M., Young, C., Rowland, J. and Verdin, J.P. 2015. Drought monitoring and assessment: Remote sensing and modeling approaches for the famine early warning systems network. In Hydro-Meteorological Hazards, Risks, and Disasters, Eds. Paron, P and Baldassarre, G.D., pp. 233–262, Elsevier.

    Chapter  Google Scholar 

  • Sherman LK (1932) Streamflow from rainfall by the unit hydrograph method. Eng. News-Record, 108:501–505.

    Google Scholar 

  • Singh V.P., (1995), Computer models of watershed hydrology, Water Resources Publications, LLC, USA.

    Google Scholar 

  • Singh V.P. and Frevert D., (2006), Watershed models. Boca Raton, Taylor & Francis.

    Google Scholar 

  • Singh V.P. and Woolhiser D.A., (2002), Mathematical modeling of watershed hydrology, Journal of Hydrologic Engineering, 7(4), 270–292.

    Article  Google Scholar 

  • Space Application Centre (SAC) (2011). Snow and Glaciers of the Himalayas. Space Applications Centre (ISRO), Ahmedabad, India.

    Google Scholar 

  • Subramanya, K. (2008), Engineering Hydrology 3rd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi.

    Google Scholar 

  • Thakur, P.K., Nikam, B.R., Garg, V., Aggarwal, S.P., Chouksey, A., Dhote, P.R. and Ghosh, S. (2017). Hydrological Parameters Estimation using Remote Sensing and GIS for Indian Region - A Review. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 641–659.

    Article  Google Scholar 

  • Thayyen, R.J. and Gergan, J.T. (2010). Role of glaciers in watershed hydrology: a preliminary study of a “Himalayan catchment”. The Cryosphere, 4, 115–128.

    Article  Google Scholar 

  • Wagener T., Wheater H.S. and Gupta H.V., (2004), Rainfall-Runoff Modelling in Gauged and Ungauged Catchments. Imperial College Press, London, UK, 1–306 pp.

    Google Scholar 

  • Wagner, W., Bloschl, G., Pampaloni, P., Calvet, J.C., Bizzarri, B., Wigneron, J.P. and Kerr, Y. 2007. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Nordic Hydrology, 38(1), 1–20.

    Article  Google Scholar 

  • Wardlow, B.D., Anderson, M.C., Sheffield, J., Doorn, B.D., Verdin, J.P., Zhan, X. and Rodell, M. 2012. Future opportunities and challenges in remote sensing of drought. In Remote Sensing of Drought: Innovative Monitoring Approaches, Eds. Wardlow, B.D., Anderson, M.C. and Verdin, J.P., pp 123–144, CRC Press, Taylor & Francis Group, Boca Raton.

    Chapter  Google Scholar 

  • Wheater H.S., Jakeman A.J., Beven K.J., Beck M.B. and McAleer M.J., (1993), Progress and directions in rainfall-runoff modelling, Modelling change in environmental systems, New York, pp. 101–132.

    Google Scholar 

  • Wheater HS (2002) Progress in and prospects for fluvial flood modelling. Phil. Trans. R. Soc. Lond. A 360(1796):1409–1431.

    Article  Google Scholar 

  • WMO (1974) Guide to hydrological practices. WMO, Geneva 2, Switzerland.

    Google Scholar 

  • Wood, E. F.., Global scale hydrology: advances in land surface modeling. Reviews of Geophysics Supplement, 1991, 29, 193–201.

    Article  Google Scholar 

  • Yanmin, Y., Na, W., Youqi, C., Yingbin, H. and Pengqin, T. 2010. Soil moisture monitoring using hyper-spectral remote sensing technology. In Goscience and Remote Sensing (IITA-GRS), 2010 Second IITA International Conference on , vol.2, no., pp.373–376, 28–31 Aug. 2010. doi: https://doi.org/10.1109/IITA-GRS.2010.5604219.

  • Zhao, R.J., Zhang, Y.L., Fang, L.R., LIu, X.R. and Zhang, Q.S., The Xinanjiang model. In Hydrological Forecasting Proceedings Oxford Symposium, IASH, 129, 1980, pp. 351–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, S.P., Garg, V., Thakur, P.K., Nikam, B.R. (2019). Hydrological Modelling in North Western Himalaya. In: Navalgund, R., Kumar, A., Nandy, S. (eds) Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-2128-3_6

Download citation

Publish with us

Policies and ethics