Skip to main content

Cryosphere Studies in Northwest Himalaya

  • Chapter
  • First Online:
Remote Sensing of Northwest Himalayan Ecosystems

Abstract

Himalaya is also known as the “third pole” of the Earth due to the presence of the largest area and volume of seasonal snow and glacier ice outside the polar regions. Most visible effects of climate change are found in this region (Immerzeel et al. 2010; IPCC-5 2014 WGII AR5 Section 28.3). The Indian states of Uttarakhand (UK), Himachal Pradesh (HP) and Jammu and Kashmir (J&K) together constitute a unique and rugged terrain of Northwest Himalaya (NWH). Cryosphere components of NWH mainly consist of snow cover (SC), glacier ice (GI), frozen lakes and rivers in winters and high-altitude water lakes and rivers in summer, glacier lakes (GL) and a few stretches of permafrost regions. These cryospheric components provide fresh water to Perennial Rivers of NWH such as the Beas, Ganges, Satluj and Indus by melting of seasonal snow cover and glacier ice. This area has significant variations in minimum to maximum elevation and temperature ranging from 74 m to 8611 m of K2 and −40° in cold glacier areas to +40 °C in low hills and Tarai area. The major accumulation of snow mass occurs in winter period during October to March due to precipitation from NW disturbances of winter monsoon, and main melting takes place during spring and late summer time during April to July. The last 2 weeks of August to first week of September, generally, represents end of ablation season, and during this time traditional snow line elevation (SLE), showing the minimum snow line, coincides with equilibrium line altitude (ELA) of major glaciers (Huang et al. 2011, 2013). The inaccessibility, high relief and remoteness of these mountainous regions make it very difficult to map and monitor cryospheric components using traditional ground-based field instruments and surveying and mapping techniques. In this scenario, remote sensing with its large area coverage, multi-resolution spatial and temporal scale, offers a unique opportunity to regularly map and monitor cryospheric components as shown by many studies (SAC 2010; National Remote Sensing Centre 2013). This chapter highlights remote sensing (RS) and geographical information system (GIS)-based studies of major components of NWH cryosphere such as seasonal SC, GI, GL and permafrost. This also includes subsections for mapping, monitoring and quantification of SC, GI in NWH along with retrieval and modelling of snowpack properties, snowmelt and glacier mass balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACGR (1988) Glossary of Permafrost and Related Ground-Ice Terms, National Research of Canada, Technical Memorandum No. 142: 64.

    Google Scholar 

  • Aggarwal, S.P., Thakur, P.K., Nikam, B.R. and Garg, V. (2014). Integrated approach for snowmelt run-off estimation using temperature index model, remote sensing and GIS. Current Science, 106 (3), 397–407.

    Google Scholar 

  • Al Momani, B., Morrow, P., McClean, S. (2007) Knowledge-based semi-supervised satellite image classification. In 9th international symposium on signal processing and its applications, 2007, ISSPA, February 12–15, 2007, pp. 1–4.

    Google Scholar 

  • Allen SK, Fiddes J, Linsbauer A, Randhawa SS, Saklani B, Salzmann N (2016) Permafrost studies in Kullu district, Himachal Pradesh. Curr Sci, 11: 257–260.

    Google Scholar 

  • Anderson, E. A. (1976). A point energy and mass balance model of a snow cover, Tech. Rep. 19, NOAA, Silver Spring, Md.

    Google Scholar 

  • Andreadis, K., Storck, P. and Lettenmaier, D.P., (2009), Modeling snow accumulation and ablation processes in forested environments, Water Resour Res., 45, W05429, pp. 1–13, doi:https://doi.org/10.1029/2008WR007042.

    Article  Google Scholar 

  • Bamber, J.L. and Rivera, A. (2007). A review of remote sensing methods for glacier mass balance determination, Global and Planetary Change, 59, 138–148.

    Article  Google Scholar 

  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P. and Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India), Remote Sensing of Environment, 108, 327–338.

    Article  Google Scholar 

  • Bhambri, R., Bolch, T., Chaujar, R.K. 2012. Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Curr Sci, 3

    Google Scholar 

  • Bindschadler, R. (1998). Monitoring ice sheet behaviour from space. Reviews of Geophysics, 36(1), 79–104.

    Article  Google Scholar 

  • Bindschadler, R., Dowdeswell, J.A., Hall, D. and Winther, J.G. (2001). Glaciological applications with Landsat-7 imagery: early assessments. Remote Sensing of Environment, 78(1–2), 163–179.

    Article  Google Scholar 

  • Bisht, S. M., Thakur, P. K., Chouksey, A., & Agarwal, S. P. (2015). Ice thickness estimation using geospatial technology, HYDRO- 2015. In 20th international conference on hydraulics, water resources and river engineering, December 17–19, 2015, p. 12. India: IIT Roorkee.

    Google Scholar 

  • Bras, R. A. (1990), Hydrology, an Introduction to Hydrologic Science, 643 pp., Addison-Wesley.

    Google Scholar 

  • Cuffey, K.M. and Paterson, W.S.B. (2010). The Physics of Glaciers. Elsevier Science.

    Google Scholar 

  • Dhobal, D.P., Kumar, S. and Mundepi, A.K. (1995). Morphology and glacier dynamics studies in monsoon-arid transition zone: An example from Chhota Shigri glacier, Himachal-Himalaya, India. Current Science, 68.

    Google Scholar 

  • Dozier, J. (1989). Spectral signature of alpine snow covers from the Landsat thematic mapper. Remote Sensing Environ., 28, 9–22.

    Article  Google Scholar 

  • Dozier, J. and Marks, D. (1987). Snow mapping and classification from Landsat Thematic Mapper (TM) data. Ann. Glaciol., 9, 97–103.

    Article  Google Scholar 

  • Engeset, R. V., & Ødegard, R. S. (1999). Comparison of annual changes in winter ERS-1 SAR images and glacier mass balance of Slakbreen, Svalbard. International Journal of Remote Sensing, 20(2), 259–271.

    Article  Google Scholar 

  • Engeset, R. V., & Weydahl, D. J. (1998). Analysis of glaciers and geomorphology on Svalbard using multitemporal ERS-1 SAR images. IEEE Transactions on Geoscience and Remote Sensing, 36(6), 1879–1887.

    Article  Google Scholar 

  • Engeset, R. V., Kohler, J., Melvold, K., & Lunden, B. (2002). Change detection and monitoring of glacier mass balance and facies using ERS SAR winter images over Svalbard. International Journal of Remote Sensing, 23(10), 2023–2050.

    Article  Google Scholar 

  • Farinotti, D., Huss, M., Bauder, A. and Funk, M. (2009b). An estimate of the glacier ice volume in the Swiss Alps. Global Planet. Change, 68(3), 225–231, doi: https://doi.org/10.1016/j.gloplacha.2009.05.004.

    Article  Google Scholar 

  • Farinotti, D., Huss, M., Bauder, A., Funk, M. and Truffer M.A. (2009a). Method to estimate ice volume and ice-thickness distribution of alpine glaciers. J. Glaciol., 55(191), 422–430, doi: https://doi.org/10.3189/002214309788816759.

    Article  Google Scholar 

  • Gabriel, A.K. and Goldstein, R.M. (1988). Crossed orbit interferometry: theory and experimental results from SIR-B. Int. J. Remote Sens., 9(5), 857–872.

    Article  Google Scholar 

  • Gantayat, P., Kulkarni, A.V. and Srinivasan, J. (2014). Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India, Journal of Glaciology, 60(220), pp. 277–282.

    Article  Google Scholar 

  • Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T., Su, F. (2009). Water Budget Record from Variable Infiltration Capacity (VIC) Model Algorithm Theoretical Basis Document.

    Google Scholar 

  • Garg V, Aggarwal SP, Thakur PK, Nikam BR (2014) Snow and its grain size mapping using hyperspectral remote sensing data. In: Interactive session in ISPRS TC VIII international symposium on operational remote sensing applications: opportunities, progress and challenges, Annual convention of ISRS and ISG and joint sessions with ISPRS TC IV and TC VI, hosted by National Remote, Sensing Centre, Indian Space Research Organisation, Hyderabad, India, Dec 09–12, 2014

    Google Scholar 

  • Goldstein, R.M., Engelhardt, H., Kamb B. and Frolich R.M. (1993). Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science, 262(5139), 1525–1530.

    Article  Google Scholar 

  • Goldstein, R.M., Zebker H.A. and Werner C.L. (1988). Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci., 23(4), 713–720.

    Article  Google Scholar 

  • Graham, L.C. (1974). Synthetic interferometer radar for topographic mapping. IEEE Proc., 62(6), 763–768.

    Article  Google Scholar 

  • Gruber, S. (2012). Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere, 6, 221–233, 2012, www.the-cryosphere.net/6/221/2012/ doi: https://doi.org/10.5194/tc-6-221-2012.

    Article  Google Scholar 

  • Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo N. E. and Bayr, K. J. (2002). MODIS snow cover products, Remote Sensing Environ., 83, 181–194.

    Article  Google Scholar 

  • Hallikainen, M. T., Ulaby, F. T. & Abdelrazik, M. (1986). Dielectric properties of snow in the 3 to 37 GHz range. IEEE Transactions on Antennas and Propagation, AP-34, 1329–1339.

    Article  Google Scholar 

  • Huang, L., Li, Z., Tian, B., Chen, Q., & Zhou, J. (2013). Monitoring glacier zones and snow/firn line changes in the Qinghai–Tibetan Plateau using C-band SAR imagery. Remote Sensing of Environment, 137, 17–30. doi:https://doi.org/10.1016/j.rse.2013.05.016.

    Article  Google Scholar 

  • Huang, L., Li, Z., Tian, B.-S., Chen, Q., Liu, J.-L., & Zhang, R. (2011). Classification and snow line detection for glacial areas using the polarimetric SAR image. Remote Sensing of Environment, 115(7), 1721–1732. doi:https://doi.org/10.1016/j.rse.2011.03.004.

    Article  Google Scholar 

  • Immerzeel, W.W., van Beek, L.P.H., Bierkens, M.F.P. (2010). Climate change will affect the Asian water towers. Science 328(5984): 1382–1385. doi:https://doi.org/10.1126/science.1183188,

    Article  Google Scholar 

  • IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 688 pp,.

    Google Scholar 

  • Ishikawa, M.,Watanabe, T., and Nakamura, N. (2001). Genetic differences of rock glaciers and the discontinuous mountain permafrost zone in Kanchanjunga Himal, Eastern Nepal, Permafrost Periglac. Process., 12, 243–253, doi:https://doi.org/10.1002/ppp.394.

    Article  Google Scholar 

  • Jain SK, Goswami A, Saraf AK (2010) Snowmelt runoff modeling in a Himalayan basin with the aid of satellite data. Int J Remote Sens 31(24):6603–6618

    Article  Google Scholar 

  • Joughin, I., Smith, B.E. and Abdalati, W., (2010). Glaciological advances made with interferometric synthetic aperture radar, Journal of Glaciology, 56(200), pp. 1026–1041.

    Article  Google Scholar 

  • Kendra, J. R., Sarabandi, K. & Ulaby, F. T. (1998). Radar measurements of snow: experiment and analysis. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 864–879.

    Article  Google Scholar 

  • König, M., Wadham, J., Winther, J.-G., Kohler, J., & Nuttall, A.-M. (2002). Detection of superimposed ice on the glaciers Kongsvegen and midre Love’nbreen, Svalbard, using SAR imagery. Annals of Glaciology, 34, 335–342.

    Article  Google Scholar 

  • König, M., Winther, J.-G., & Isaksson, E. (2001). Measuring snow and glacier ice properties from satellite. Reviews of Geophysics, 39(1), 1–27.

    Article  Google Scholar 

  • Kosmann, D., Wessel, B. Schwieger, V. (2010). Global Digital Elevation Model from TanDEM-X and the Calibration/Validation with worldwide kinematic GPS Tracks. XXIV FIG International Congress 2010, 11–16 April, 2010, Sydney, Australia.

    Google Scholar 

  • Kulkarni, A. V. (1992) Mass balance of Himalayan glaciers using AAR and ELA methods, Journal of Glaciology, 38(128), 101–104.

    Article  Google Scholar 

  • Kulkarni, A. V., Rathore, B. P. and Suja, A. (2004). Monitoring of glacial mass balance in the Baspa basin using accumulation area ratio method. Curr. Sci., 86, 101–106.

    Google Scholar 

  • Kulkarni, A. V., Singh, S. K., Mathur, P. and Mishra, V. D., (2006). Algorithm to monitor snow cover using AWiFS data of Resourcesat-1 for the Himalayan region. Int. J. Remote Sensing, 27, 2449–2457.

    Article  Google Scholar 

  • Kulkarni, A., Rathore, B. P., Singh, S. K. and Ajai, A. (2010). Distribution of seasonal snow cover in central and western Hima laya. Ann. Glaciol., 51(54), 121–128.

    Article  Google Scholar 

  • Kumar K, Dumka RK, Miral MS, Satyal GS, Pant M. 2008. Estimation of retreat rate of Gangotri glacier using rapid static and kinematic GPS survey. Curr Sci 94(2): 258–262

    Google Scholar 

  • Kundu, S., Chakraborty, M. (2015). Delineation of glacial zones of Gangotri and other glaciers of Central Himalaya using RISAT-1 C-band dual-pol SAR. International Journal of Remote Sensing, 36(6), 1529–1550.

    Article  Google Scholar 

  • Leinss, S., Parrella, G., & Hajnsek, I. (2014). Snow height determination by polarimetric phase differences in X-band SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9), 3794–3810.

    Article  Google Scholar 

  • Leinss, S., Wiesmann, A., Lemmetyinen, J., & Hajnsek, I. (2015). Snow water equivalent of dry snow measured by differential interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8), 3773–3790.

    Article  Google Scholar 

  • Li, F.K. and Goldstein, R.M. (1990). Studies of multi-baseline spaceborne interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sens., 28(1), 88–97.

    Article  Google Scholar 

  • Looyenga, H. (1965). Dielectric constant of heterogeneous mixtures. Physica, 21, 401–406.

    Article  Google Scholar 

  • Mätzler, C. (1996). Microwave remote sensing of dry snow. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 573–581.

    Article  Google Scholar 

  • Martinec, J., Rango A. & Roberts R. (2007). Snowmelt Runoff Model, User's Manual, Updated Edition 2007, Edited by Enrique Gómez-Landesa, Windows Version 1.11.

    Google Scholar 

  • Martinec, J., Rango, A. and Major, E. (1983). The Snowmelt-Runoff (SRM) User’s Manual, NASA Reference Publ. 1100, NASA, Washington DC.

    Google Scholar 

  • Minnett, P. J. (2014). Cryosphere, Climate Change Feedbacks, Encyclopedia of Remote Sensing, Part of the series Encyclopedia of Earth Sciences Series, pp 101–104.

    Chapter  Google Scholar 

  • Moradkhani, H. and Sorooshian, S. (2008). General review of rainfall - runoff modeling: model calibration, data assimilation, and uncertainty analysis. Hydrological modeling and the water cycle.Springer. 291 p. ISBN 978-3-540-77842-4.

    Google Scholar 

  • Naha, S., Thakur, P.K. and Aggarwal, S.P. (2016). Hydrological Modelling and data assimilation of Satellite Snow Cover Area using a Land Surface Model, VIC. Paper published in the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016, XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic, DOI:https://doi.org/10.5194/isprsarchives-XLI-B8-353-2016.

    Article  Google Scholar 

  • National Remote Sensing Centre, NRSC, (2013). Glacier lakes in Uttarakhand—a remote sensing based inventory. Geosciences Group, RSA-Area, National Remote Sensing Centre (NRSC), ISRO, Hyderabad, India.

    Google Scholar 

  • Negi HS, Singh SK, Kulkarni AV, Semwal BS (2010) Field based spectral reflectance measurements of seasonal snow cover in the Indian Himalaya. Int J Remote Sens 31(9):2393–2417.

    Article  Google Scholar 

  • Negi, H.S., Thakur, N.K. and Ganju, A. (2012). Monitoring of Gangotri glacier using remote sensing and ground observations. Journal of earth system science 121 (4):855–66.

    Article  Google Scholar 

  • Nikam, B.R., Garg, V., Gupta, P.K., Thakur, P.K., Kumar, A.S., Chouksey, A., Aggarwal, S.P., Dhote P. and Purohit, S. (2017). Satellite-based mapping and monitoring of heavy snowfall in North Western Himalaya and its hydrologic consequences, Current science, 113(12): 2328–2334.

    Article  Google Scholar 

  • Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E., & Green, R. O. (2003). Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sensing of Environment, 85(1), 64–77. DOI: https://doi.org/10.1016/S0034-4257(02)00187-6.

    Article  Google Scholar 

  • Painter, T. H., Roberts, D. A., Green, R. O., & Dozier, J. (1998). The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data. Remote Sensing of Environment, 65(3), 320–332. DOI: https://doi.org/10.1016/S0034-4257(98)00041-8.

    Article  Google Scholar 

  • Patrington, K. C. (1998). Discrimination of glacier facies using multi-temporal SAR data. Journal of Glaciology, 44(146), 42–53.

    Article  Google Scholar 

  • Pierce, L. E., Ulaby, F. T., Sarabandi, K., & Dobson, M. C. (1994). Knowledge-based classification of polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 32, 1081–1086.

    Article  Google Scholar 

  • Pratap B, Dobhal DP, Bhambri R, Mehta M, Tewari VC (2016) Four decades of glacier mass balance observations in the Indian Himalaya. Reg Environ Change 16:643–658.

    Article  Google Scholar 

  • Raina, V.K. and Srivastava, D. (2008). Glacier atlas of India. Geological Society of India, Bangalore. p 316.

    Google Scholar 

  • Ramanathan, A.L. (2011). Status Report on Chhota Shigri Glacier (Himachal Pradesh), Department of Science and Technology, Ministry of Science and Technology, New Delhi, Himalayan Glaciology Technical Report No.1, 88.

    Google Scholar 

  • Raney, R. K. (2007). Hybrid-polarity SAR architecture. IEEE Transactions on Geoscience and Remote Sensing, 45(1), 3397–3404.

    Article  Google Scholar 

  • Raney, R. K., Cahill, J. T., Patterson, G., Bussey, D. B. J. (2012). The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. Journal of Geophysical Research: Planets, 117(E12).

    Google Scholar 

  • Rau, F., Braun, M., Friedrich, M., Weber, F., & Gobmann, H. (2000). Radar glacier zones and its boundaries as indicators of glacier mass balance and climatic variability. EARSeL eProceedings, 1, 317–327.

    Google Scholar 

  • Rees, W. G. (2006). Remote sensing of snow and ice. Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., and Wester, P. (2015). Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth, The Cryosphere, 9, 2089–2099

    Article  Google Scholar 

  • Sheffield, J., Pan, M., Wood, E.F., Mitchell, K.E., Houser, P.R., Schaake, J.C., Robock, A., Lohmann, D., Cosgrove, B., Duan, Q. and Luo, L., 2003. Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. Journal of Geophysical Research: Atmospheres, 108(D22).

    Google Scholar 

  • Shi, J. and Dozier, J. (1995). Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 33, 905–914.

    Article  Google Scholar 

  • Shi, J. and Dozier, J. (2000). Estimation of snow water equivalence using SIR-C/X SAR, Part I: inferring snow density and subsurface properties. IEEE Transactions on Geoscience and Remote Sensing, 38, 2465–2474.

    Article  Google Scholar 

  • Space Application Centre, SAC, (2010). Final Technical Report - Snow and Glacier Studies, A joint Project of Ministry of Environment and Forests and Department of Space, Govt. of India, SAC/RESA/MESG/SGP /TR / 59 /2010. 268 pages.

    Google Scholar 

  • Strozzi, T., Wegmuller, U. and Matzler, C. (1999). Mapping wet snowcovers with SAR interferometry. International Journal of Remote Sensing, 20 (12): 2395-620 403. doi: https://doi.org/10.1080/014311699212083.

    Article  Google Scholar 

  • Surendar, M., Bhattacharya, A., Singh, G., & Venkataraman, G. (2015a). Estimation of snow density using full-polarimetric synthetic aperture radar (SAR) data. Physics and Chemistry of the Earth, 83–84, 156–165.

    Article  Google Scholar 

  • Surendar, M., Bhattacharya, A., Singh, G., Yamaguchi, Y., & Venkataraman, G. (2015b). Development of a snow wetness inversion algorithm using polarimetric scattering power decomposition model. International Journal of Applied Earth Observation and Geoinformation, 42, 65–75.

    Article  Google Scholar 

  • Swaroop, S., Raina, V.K. and Sangeswar, C.V. (2003). Ice flow of Gangotri glacier. In Srivastava D, Gupta KR and Mukerji S eds. Proceedings of the Workshop on Gangotri glacier, 26–28 March 2003, Lucknow, India. (Spec. Publ. 80) Geological Survey of India, Kolkata.

    Google Scholar 

  • Tarboton, D. G., Chowdhury, T. G. and Jackson, T. H. (1995). A spatially distributed energy balance snowmelt model, in Biogeochemistry of Seasonally Snow Covered Catchments, vol. 228, edited by Tonneson, K. A., Williams, W. and Tranter, M. pp. 141–155, Int. Assoc. of Hydrol. Sci., Wallingford, U. K.

    Google Scholar 

  • Thakur, P. K., Aggarwal, S.P., Arun, G., Sood, S., Kumar, A.S., Snehmani, Dobhal, D.P. (2016b). Estimation of snow cover area, snow physical properties and glacier classification in parts of Western Himalayas using C-band SAR data. Springer’s Journal of the Indian Society of Remote Sensing (JISRS), DOI: https://doi.org/10.1007/s12524-016-0609-y.

    Article  Google Scholar 

  • Thakur, P.K., Aggarwal, S.P., Garg, P.K., Garg, R.D., Snehmani, Pandit A and Kumar, S. (2012). Snow physical parameter estimation using space based SAR. Geocarto International, 27(3):263–288, DOI:https://doi.org/10.1080/10106049.2012.672477.

    Article  Google Scholar 

  • Thakur, P.K., Dixit, A., Chouksey, A., Aggarwal, S.P. and Kumar, A.S. (2016a). Ice sheet features identification, glacier velocity estimation and glacier zones classification using high resolution optical and SAR data, paper published in SPIE Asia-Pacific Remote Sensing conference during April 4-7, 2016 at New Delhi, India, Proc. of SPIE Vol. 9877, 987719-1-16, DOI: https://doi.org/10.1117/12.2224027.

  • Thakur, P.K., Garg, P.K., Aggarwal, S.P., Garg, R.D. and Snehmani (2013). Snow Cover Area Mapping Using Synthetic Aperture Radar in Manali watershed of Beas River in the Northwest Himalayas. Journal of the Indian Society of Remote Sensing (JISRS), 41(4), 933–945. DOI: https://doi.org/10.1007/s12524-012-0236-1.

    Article  Google Scholar 

  • Tso, B., Mather, P. (2009). Classification methods for remotely sensed data (2nd ed.). Boca Raton: CRC Press, Taylor & Francis Group.

    Book  Google Scholar 

  • van Everdingen, R. (ed.), (1998). Multi-Language Glossary of Permafrost and Related Ground-Ice Terms, National Snow and Ice Data Center, Boulder, CO, USA,

    Google Scholar 

  • Vaughan, D. G. et al., Observations: Cryosphere, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.), Cambridge University Press, Cambridge, United Kingdom, 2013, pp. 317–382.

    Google Scholar 

  • Vogel, S. W. (2002) Usage of high-resolution Landsat-7 band-8 for single band snow cover classification. Ann. Glaciol., 34, 53–57.

    Article  Google Scholar 

  • Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C., Pottakkal, J. G., Berthier, E., Ramanathan, A., Hasnain, S. I. and Chevallier, P. (2007). Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya, J. Glaciol., 53, 603–611.

    Article  Google Scholar 

  • Westermann, S., Schuler, T. V., Gisnas, K. and Etzelmuller B. (2013). Transient thermal modeling of permafrost conditions in Southern Norway, The Cryosphere, 7, 719–739, www.the-cryosphere.net/7/719/2013/ doi: 10.5194/tc-7-719-2013.

    Article  Google Scholar 

  • Wigmosta, M. S., Vail, L. W. and Lettenmaier, D. P. (1994). A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30, 1665–1679.

    Google Scholar 

  • Zebker, H.A. and R.M. Goldstein. 1986. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res., 91(B5), 4993–4999.

    Article  Google Scholar 

Websites

Download references

Acknowledgements

The authors are thankful to NRSC, USGS, BBMB, CWC, IMD and SASE for providing satellite and hydrometeorological data required for this study. Funding for this work is provided by ISRO under various TDP and EOAM projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, P.K., Garg, V., Nikam, B.R., Aggarwal, S.P. (2019). Cryosphere Studies in Northwest Himalaya. In: Navalgund, R., Kumar, A., Nandy, S. (eds) Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-2128-3_5

Download citation

Publish with us

Policies and ethics