Skip to main content

Carbon Monoxide Plume over Northwestern Himalaya: A Remote Sensing and Modeling Approach

  • Chapter
  • First Online:
Remote Sensing of Northwest Himalayan Ecosystems
  • 646 Accesses

Abstract

Forest fire has a considerable impact on the atmospheric abundance of trace gases and aerosols

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreae, M. O., and Merlet, P., (2001), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15, 955–966, doi:https://doi.org/10.1029/2000GB001382.

    Article  Google Scholar 

  • Chahine, M. T., et al. (2006), AIRS: Improving weather forecasting and providing new data on greenhouse gases, Bull. Am. Meteorol. Soc., 87, 911–926.

    Article  Google Scholar 

  • Chen, F., and Dudhia, J. (2001), Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review, 129(4), 569–585.

    Article  Google Scholar 

  • Crutzen, P. J., and Andreae, M. O., (1990), Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678.

    Article  Google Scholar 

  • Crutzen, P.J. and Zimmermann, P.H. (1991), The changing photochemistry of the troposphere. Tellus 43AB, 136-151.

    Article  Google Scholar 

  • Daniel, J.S. and Solomon, S. (1998), On the climate forcing of carbon monoxide. J. Geophys. Res. 103, 13249–13260.

    Article  Google Scholar 

  • Ding, A.,Wang, T., Xue, L., Gao, J., Stohl, A., Lei, H., Jin, D., Ren, Y., Wang, X., Wei, X., Qi, Y., Liu, J., and Zhang, X. (2009), Transport of north China air pollution by midlatitude cyclones: case study of aircraft measurements in summer 2007, J. Geophys. Res., 114, D08304, doi:https://doi.org/10.1029/2008JD011023.

    Article  Google Scholar 

  • Ding K., Liu, J., Ding, A., Liu, Q., Zhao, T. L., Shi, J., Han, Y., Wang, H., and Jiang, F. (2015), Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia, Atmos. Chem. Phys., 15, 2843–2866.

    Article  Google Scholar 

  • Duncan, B. N., Bey, I., Chin, M., Mickley, L. J., Fairlie, T. D., Martin, R. V, and Matsueda, H. (2003), Indonesian wildfires of 1997: Impact on tropospheric chemistry, J. Geophys. Res., 108(D15), 4458, doi:https://doi.org/10.1029/2002JD003195.

    Article  Google Scholar 

  • Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D., Kloster, S. (2010), Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geoscientific Model Development, 3, 43–67. https://doi.org/10.5194/gmd-3-43-2010.

    Article  Google Scholar 

  • Grell, G. A., and Freitas, S. R. (2013), A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics Discuss, 13, 23845–23893, doi:http://doi.org/10.5194/acpd-13-23845-2013.

    Article  Google Scholar 

  • Hong, S.Y., Noh, Y., and Dudhia, J. (2006), A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Monthly Weather Review, 134(9), 2318–2341.

    Article  Google Scholar 

  • Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D. (2008), Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi:http://doi.org/10.1029/2008JD009944.

  • Janjic, Z. I. (1996), The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19–23 August, Amer. Meteor. Soc., Boston, MA, 354–355.

    Google Scholar 

  • Jha C. S. et al. (2016), Monitoring of forest fires from space – ISRO’s initiative for near real-time monitoring of the recent forest fires in Uttarakhand, India, Current Science, 110, 2057–2060.

    Google Scholar 

  • Kumar, R., Naja, M., Satheesh, S. K., Ojha, N., Joshi, H., Sarangi, T., Pant, P., Dumka, U. C., Hegde, P., and Venkataramani, S. (2011), Influences of the springtime northern Indian biomass burning over the central Himalayas, J. Geophys. Res., 116, D19302, doi:https://doi.org/10.1029/2010JD015509.

    Article  Google Scholar 

  • Kumar, R., Naja, M., Pfister, G. G., Barth, M. C., and Brasseur, G. P. (2013), Source attribution of carbon monoxide in India and surrounding regions during wintertime. J. Geophys. Res., 118(4), 1981–1995.

    Google Scholar 

  • Kondo, Y., Morino, Y., Takegawa, N., Koike, M., Kita, K., Miyazaki, Y., Sachse, G. W., Vay, S. A., Avery, M. A., Flocke, F., Weinheimer, A. J., Eisele, F. L., Zondlo, M. A., Weber, R. J., Singh, H. B., Chen, G., Crawford, J., Blake, D. R., Fuelberg, H. E., Clarke, A. D., Talbot, R. W., Sandholm, S. T., Browell, E. V., Streets, D. G., and Liley, B (2004), Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring, J. Geophys. Res., 109(D15).

    Google Scholar 

  • Lau, K. M., Kim, M. K., and Kim, K. M. (2006), Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau, Clim. Dyn., 26, 855–864, doi:https://doi.org/10.1007/s00382-006-0114-z.

    Article  Google Scholar 

  • Lin, Y. L., Farley, R. D., and Orville, H. D. (1983), Bulk Parameterization of the Snow Field in a Cloud Model, Journal of Climate and Applied Meteorology, 22(6), 1065–1092.

    Article  Google Scholar 

  • Panmao, Z., Rong, Y., Yanjun, G., et al. (2016), The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate, J. Meteor. Res., 30(3), 283–297, doi:https://doi.org/10.1007/s13-351-016-6101-3.

  • Padalia H., Singh S. and Kumar, A. S. (2016), A comparison of VIIRS and MODIS active fire products for Uttarakhand Episodic forest fire 2016, IIRS CONTACT, 18, 12–13. (https://www.iirs.gov.in/iirs/sites/default/files/pdf/newsletter/Contact_December_2016.pdf)

  • Pfister, G. G., Wiedinmyer, C., and Emmons, L. K. (2008), Impact of the fall 2007 California wildfires on surface ozone: Integrating local observations with global model simulations, Geophys. Res. Lett., 35, L19814, doi:https://doi.org/10.1029/2008GL034747.

    Article  Google Scholar 

  • Pfister, G. G., Avise, J., Wiedinmyer, C., Edwards, D. P., Emmons, L. K., Diskin, G. D., Wisthaler, A. (2011), CO source contribution analysis for California during ARCTAS-CARB. Atmospheric Chemistry and Physics, 11(15), 7515–7532. https://doi.org/10.5194/acp-11-7515-2011.

    Article  Google Scholar 

  • Sarangi, T., Naja, M., Ojha, N., Kumar, R., Lal, S., Venkataramani, S., Kumar, A., Sagar, R., and Chandola, H. C. (2014), First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas, J. Geophys. Res. Atmos., 119,1592–1611, doi:https://doi.org/10.1002/2013JD020631.

    Article  Google Scholar 

  • Savage, N.H., Harrison, R.M., Monks, P.S., and Salisbury, G. (2001), Steady-state modeling of hydroxyl radical concentrations at Mace Head during the EASE’ 97 campaign, May 1997, Atmos. Environ, 35, 515–524.

    Google Scholar 

  • Semwal, R. L. and Mehta, J. P. (1996), Ecology of forest fires in chirpine (Pinus roxburghii. Sarg.) forests of Garhwal Himalaya. Curr. Sci., 70, 426–427.

    Google Scholar 

  • Singh, R. P., Gumber, S., Tewari, P., and Singh, S. P. (2016), Nature of forest fires in Uttarakhand: frequency, size and seasonal patterns in relation to pre-monsoonal environment, Current Science, 111, 398–403.

    Article  Google Scholar 

  • Srivastava, S., and Sheel, V. (2013), Study of tropospheric CO and O3 enhancement episode over Indonesia during Autumn 2006 using the Model for Ozone and Related chemical Tracers (MOZART-4), Atmospheric Environment, 67, 53–62. https://doi.org/10.1016/j.atmosenv.2012.09.067.

    Article  Google Scholar 

  • Takegawa, N., et al. (2003), Photochemical production of O3 in biomass burning plumes in the boundary layer over northern Australia, Geophys. Res. Lett., 30(10), 1500, doi:https://doi.org/10.1029/2003GL017017.

    Article  Google Scholar 

  • Vander Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano, A. F. (2006), Interannual variability of global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys. Discuss., 6(2), 3175–3226, doi:https://doi.org/10.5194/acpd-6-3175-2006.

    Article  Google Scholar 

  • Wesely, M. L. (1989), Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmospheric Environment, 23(6), 1293–1304. doi:https://doi.org/10.1016/0004-6981(89)90153-4.

    Article  Google Scholar 

  • Wild, O., Zhu, X., and Prather, M. J. (2000), Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models, Atmospheric Chemistry, 37, 245–282.

    Google Scholar 

  • Yasunari, T. J., et al. (2010), Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory—Pyramid data and snow albedo changes over Himalayan glaciers, Atmos. Chem. Phys., 10, 6603–6615, doi:https://doi.org/10.5194/acp-10-6603-2010.

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to AIRS and MODIS teams for making their satellite data freely available for scientific research. CO in-situ observation over Dehradun is funded by ISRO. SS is grateful to Head MASD, Dean Academics and Director IIRS for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, S., Nandi, I., Yarragunta, Y., Senthil Kumar, A. (2019). Carbon Monoxide Plume over Northwestern Himalaya: A Remote Sensing and Modeling Approach. In: Navalgund, R., Kumar, A., Nandy, S. (eds) Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-2128-3_15

Download citation

Publish with us

Policies and ethics