Skip to main content

An Improved DBSCAN Algorithm Using Local Parameters

  • Conference paper
  • First Online:
Artificial Intelligence (ICAI 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 888))

Included in the following conference series:

Abstract

Density-Based Spatial Clustering of Applications with Noise (DBSCAN), as one of the classic density-based clustering algorithms, has the advantage of identifying clusters with different shapes, and it has been widely used in clustering analysis. Due to the DBSCAN algorithm using globally unique parameters ɛ and MinPts, the correct number of classes can not be obtained when clustering the unbalanced data, consequently, the clustering effect is not satisfactory. To solve this problem, this paper proposes a clustering algorithm LP-DBSCAN which uses local parameters for unbalanced data. The algorithm divides the data set into multiple data regions by DPC algorithm. And the size and shape of each data region depends on the density characteristics of the sample. Then for each data region, set the appropriate parameters for local clustering, and finally merge the data regions. The algorithm is simple and easy to implement. The experimental results show that this algorithm can solve the problems of DBSCAN algorithm and can deal with arbitrary shape data and unbalanced data. Especially in dealing with unbalanced data, the clustering effect is obviously better than other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, J., Liu, J., Zhao, L.: Clustering algorithms research. J. Softw. 19(1), 48–61 (2008)

    Article  Google Scholar 

  2. Agarwal, S.: Data mining: data mining concepts and techniques. In: International Conference on Machine Intelligence and Research Advancement, pp. 203–207. IEEE (2014)

    Google Scholar 

  3. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques. ACM SIGMOD Rec. 31(1), 76–77 (2011)

    Article  Google Scholar 

  4. Hu, Z., Hongye, T., Yuhua, Q.: Chinese text deception detection based on ensemble learning. J. Comput. Res. Dev. 52(5), 1005–1013 (2015)

    Google Scholar 

  5. Chu, X.: K-means clustering algorithm and artificial fish swam algorithm applied in image segmentation technology. Comput. Syst. Appl. 22(4), 92–94 (2013)

    Google Scholar 

  6. Ester, M., Kriegel, H., Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases (1996)

    Google Scholar 

  7. Xiong, Z., Sun, S., Zhang, Y.: Partition-based DBSCAN algorithm with different parameter. Comput. Eng. Des. 26(9), 2319–2321 (2005)

    Google Scholar 

  8. Zhou, S., Zhou, A., Cao, J.: A data-partitioning-based DBSCAN algorithm. J. Comput. Res. Dev. 37(10), 1153–1159 (2000)

    Google Scholar 

  9. Patwary, M.A., Liao, W., Manne, F., et al.: A new scalable parallel DBSCAN algorithm using the disjoint-set data structure, pp. 1–11 (2012)

    Google Scholar 

  10. Li, Y., Ma, L., Fan, F.: Improved DBSCAN clustering algorithm based on dynamic neighbor. Comput. Eng. Appl. 52(20), 80–85 (2016)

    Google Scholar 

  11. Rodriguez, A., Laio, A.: Machine learning. Clustering by fast search and find of density peaks. Science 344(6191), 1492 (2014)

    Article  Google Scholar 

  12. Dai, B.R., Lin, I.C.: Efficient map/reduce-based DBSCAN algorithm with optimized data partition. In: IEEE, International Conference on Cloud Computing, pp. 59–66. IEEE (2012)

    Google Scholar 

  13. Sancho-Asensio, A., Navarro, J., Arrieta-Salinas, I., et al.: Improving data partition schemes in Smart Grids via clustering data streams. Expert Syst. Appl. 41(13), 5832–5842 (2014)

    Article  Google Scholar 

  14. Morrison, R.E., Bryant, C.M., Terejanu, G., et al.: Data partition methodology for validation of predictive models. Comput. Math Appl. 66(10), 2114–2125 (2013)

    Article  MathSciNet  Google Scholar 

  15. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  16. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972 (2007)

    Article  MathSciNet  Google Scholar 

  17. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823. IEEE Computer Society (2015)

    Google Scholar 

  18. Jahirabadkar, S., Kulkarni, P.: Algorithm to determine ε-distance parameter in density based clustering. Expert Syst. Appl. 41(6), 2939–2946 (2014)

    Article  Google Scholar 

  19. Ren, Y., Liu, X., Liu, W.: DBCAMM: a novel density based clustering algorithm via using the Mahalanobis metric. Appl. Soft Comput. 12(5), 1542–1554 (2012)

    Article  MathSciNet  Google Scholar 

  20. Guha, S., Rastogi, R., Shim, K., et al.: CURE: an efficient clustering algorithm for large databases. Inf. Syst. 26(1), 35–58 (2001)

    Article  Google Scholar 

  21. Cacciari, M., Salam, G.P., Soyez, G.: The anti-k_t jet clustering algorithm. J. High Energy Phys. 04(4), 403–410 (2008)

    MATH  Google Scholar 

  22. Pal, N.R., Pal, K., Keller, J.M., et al.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  Google Scholar 

  23. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2012)

    Article  Google Scholar 

  24. Tran, T.N., Drab, K., Daszykowski, M.: Revised DBSCAN algorithm to cluster data with dense adjacent clusters. Chemometr. Intell. Lab. Syst. 120(2), 92–96 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

As time goes by, I have spent most of my postgraduate studies. Firstly I must thank my mentor for guiding me to get started and motivating me to move forward. Thank him for giving me help in the research ideas of the paper. Secondly, I will thank to the professional brothers in the lab for helping me to revise my paper and for giving me guidance on experiments. Finally, I will sincerely thank to all the experts and professors who help me review the manuscript during the busy schedule.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diao, K., Liang, Y., Fan, J. (2018). An Improved DBSCAN Algorithm Using Local Parameters. In: Zhou, ZH., Yang, Q., Gao, Y., Zheng, Y. (eds) Artificial Intelligence. ICAI 2018. Communications in Computer and Information Science, vol 888. Springer, Singapore. https://doi.org/10.1007/978-981-13-2122-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2122-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2121-4

  • Online ISBN: 978-981-13-2122-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics