Skip to main content

Mechanical Evaluation of Poly-ε-Caprolactone and Biosilicate® Composites

  • Conference paper
  • First Online:
  • 1346 Accesses

Part of the book series: IFMBE Proceedings ((IFMBE,volume 70/1))

Abstract

The search for functional materials that repair and/or regenerate of biological tissues in a satisfactory manner has continually risen in the past few years. For such applications, composite materials are each time being better accepted, capable of merge properties from different materials. In this context, the purpose of this study is the development and mechanical characterization of bioactive composite films based on Poly(ε-caprolactone) and Biosilicate®, obtained from two different routes. Route 1 uses the solvent casting technique, and route 2 consists of phase precipitation followed by solvent casting. The mechanical tests show that route 1 presents samples more resistant than route 2, probably due to it high porosity levels. The addition of BS yielded an increase in Young’s modulus of around 46%, although the maximum stress and yield strength were reduced. Nevertheless, the mechanical properties of the developed materials are compatible with the biological tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gibson, R.F.: Principles of Composite Material Mechanics, 4 edn. CRC Press, Florida (2016)

    Google Scholar 

  2. Orefice, R.L., et al.: Biomateriais—fundamentos e aplicações, 1 edn. Guanabara Koogan, Belo Horizonte (2006)

    Google Scholar 

  3. Dash, T.K., Konkimalla, V.B.: Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release 158(1), 15–33 (2012)

    Article  Google Scholar 

  4. Crovace, M.C., et al.: Biosilicate®—a multipurpose, highly bioactive glass ceramic. In vitro, in vivo and clinical trials. J. Non-Crystal. Solids 432(part A), 90–110 (2016)

    Article  Google Scholar 

  5. Gabbai-Armelin, P.R., et al.: Injectable composites based on biosilicate® and alginate: handling and in vitro characterization. RSC Adv. 4(86), 45778–45785 (2014)

    Article  Google Scholar 

  6. Kido, H.W., et al.: Porous poly (D, L-lactide-co-glycolide) acid/biosilicate® composite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 105(1), 63–71 (2015)

    Article  Google Scholar 

  7. Santos, L.R., et al.: Preliminary in vitro biocompatibility study of chitosan/Biosilicate® composite membranes. In: Workshop de Biomateriais, Engenharia de Tecidos e Orgãos Artificiais 2015, OBI, vol. 1, p. 1. Campina Grande (2015)

    Google Scholar 

  8. Abedalwafa, M., et al.: Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev. Adv. Mater. Sci. 34, 123–140 (2013)

    Google Scholar 

  9. Callister, W.D.: Materials Science and engineering: an introduction. 8 edn. Wiley Inc, Utah (2010)

    Google Scholar 

  10. Canevarolo, S.V.: Ciências dos Polímeros, 2nd edn. Artliber, Campinas (2007)

    Google Scholar 

  11. Chawla, Krishan Kumar: Composite Materials: Science and Engineering, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  12. Mohammadkhah, A., et al.: Fabrication and characterization of poly-(ε)-caprolactone and bioative glass composites for tissue engineering applications. Mater. Sci. Eng C 49, 632–639 (2015)

    Article  Google Scholar 

  13. Poh, P.S.P., et al.: In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone/bioative glass composite scaffolds. Acta Biomater. 30, 319–333 (2016)

    Article  Google Scholar 

  14. Leblon, C.E., et al.: In vitro comparative biodegradation analysis of salt-leached porous polymer scaffolds. J. Appl. Polym. Sci. 128(5), 2701–2712 (2013)

    Article  Google Scholar 

  15. ASTM-D882-12. Standard test method for tensile properties of thin plastic sheeting. In: Book of Standards: ASTM International, vol. 8, no. 1 (2012)

    Google Scholar 

  16. Black, J., Hastings, G.: Handbook of Biomaterial Properties. Chapman & Hall, pp. 135–213. London (1998)

    Google Scholar 

  17. Ferreira, F.A, Simbara, M.M.O., Malmonge, S. M.: Estudo in vitro da degradação hidrolítica de polímeros utilizados em engenharia tecidual. In: 8o Congresso Latino Americano de Órgãos Artificiais, Biomateriais e Engenharia Tecidual, 2014, COLAOB. Rosário (2014)

    Google Scholar 

  18. Jo, J., et al.: In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(ε-caprolactone) composite materials. J. Biomed. Mater. Res. Part B Appl. Biomater. 91, 231–220 (2009)

    Google Scholar 

  19. Liu, J., et al.: Microstructure and properties of polycaprolactone/calcium sulfate particle and whisker composites. Polym. Compos. 33(4), 501–508 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weber, A.F., Monteiro, R.S., Malmonge, S.M., Souza, M.T., Petil, O., Daguano, J.K.M.B. (2019). Mechanical Evaluation of Poly-ε-Caprolactone and Biosilicate® Composites. In: Costa-Felix, R., Machado, J., Alvarenga, A. (eds) XXVI Brazilian Congress on Biomedical Engineering. IFMBE Proceedings, vol 70/1. Springer, Singapore. https://doi.org/10.1007/978-981-13-2119-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2119-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2118-4

  • Online ISBN: 978-981-13-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics