Skip to main content

Preparation of Reduced TiO2–x for Photocatalysis

  • Chapter
  • First Online:
Photocatalysis

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 100))

Abstract

The development of TiO2–x photocatalysts will be discussed in this chapter. TiO2–x can be obtained by the incorporation of H atoms or the removal of oxygen atoms on the surface and/or in the bulk of TiO2 photocatalysts. It has been proved to be an efficient environmental and energy conversion–storage material, which can be used in photodegradation of organic compounds, photocatalytic hydrogen generation from water splitting, photoreduction of CO2, lithium-ion batteries, oxygen reduction reaction, and dye-sensitized solar cells. Firstly, the preparation methods of TiO2–x are carefully discussed and scientifically classified into two main categories, where the reactions take place under reducing or oxidizing atmosphere. In order to further improve the activities of TiO2–x catalysts, modification approaches are then introduced, such as doping with nonmetal elements, grafting with metals, compositing with other materials, designing of ordered morphology, special facet exposure, etc. Finally, the current challenges and limits of TiO2–x are also proposed, and new catalyst systems are encouraged for practical applications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    CAS  PubMed  Google Scholar 

  2. Komaguchi K, Nakano H, Araki A, Harima Y (2006) Photoinduced electron transfer from anatase to rutile in partially reduced TiO2 (P-25) nanoparticles: an ESR study. Chem Phys Lett 428(4–6):338–342

    Article  CAS  Google Scholar 

  3. Diebold U, Anderson JF, Ng KO, Vanderbilt D (1996) Evidence for the tunneling site on transition-metal oxides: TiO2(110). Phys Rev Lett 77(7):1322–1325

    Article  CAS  PubMed  Google Scholar 

  4. Cronemeyer DC (1959) Infrared absorption of reduced rutile TiO2 single crystals. Phys Rev 113(5):1222–1226

    Article  CAS  Google Scholar 

  5. Epling WS, Peden CHF, Henderson MA, Diebold U (1998) Evidence for oxygen adatoms on TiO2 (110) resulting from O2 dissociation at vacancy sites. Surf Sci 412-413(0):333–343

    Article  Google Scholar 

  6. Di Valentin C, Pacchioni G, Selloni A (2009) Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C 113(48):20543–20552

    Article  CAS  Google Scholar 

  7. Jiang Z, Zhang W, Jin L, Yang X, Xu F, Zhu J, Huang W (2007) Direct XPS evidence for charge transfer from a reduced rutile TiO2(110) surface to Au clusters. J Phys Chem C 111(33):12434–12439

    Article  CAS  Google Scholar 

  8. Deskins NA, Rousseau R, Dupuis M (2011) Distribution of Ti3+ surface sites in reduced TiO2. J Phys Chem C 115(15):7562–7572

    Article  CAS  Google Scholar 

  9. Petrik NG, Zhang Z, Du Y, Dohnálek Z, Lyubinetsky I, Kimmel GA (2009) Chemical reactivity of reduced TiO2(110): the dominant role of surface defects in oxygen chemisorption. J Phys Chem C 113(28):12407–12411

    Article  CAS  Google Scholar 

  10. Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G, Hebenstreit W, Schmid M, Varga P (1998) Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf Sci 411(1–2):137–153

    Article  CAS  Google Scholar 

  11. Fang W, Xing M, Zhang J (2017) Modifications on reduced titanium dioxide photocatalysts: a review. J Photochem Photobiol C 32:21–39

    Article  CAS  Google Scholar 

  12. Chen X, Liu L, Yu P, Mao S (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750

    Article  CAS  PubMed  Google Scholar 

  13. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang J, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033

    Article  CAS  PubMed  Google Scholar 

  14. Cai J, Wang Y, Zhu Y, Wu M, Zhang H, Li X, Jiang Z, Meng M (2015) In situ formation of disorder-engineered TiO2(B)-anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl Mater Inter 7(45):24987–24992

    Article  CAS  Google Scholar 

  15. Hu W, Zhou W, Zhang K, Zhang X, Wang L, Jiang B, Tian G, Zhao D, Fu H (2016) Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J Mater Chem A 4(19):7495–7502

    Article  CAS  Google Scholar 

  16. Lu H, Zhao B, Pan R, Yao J, Qiu J, Luo L, Liu Y (2014) Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv 4(3):1128–1132

    Article  CAS  Google Scholar 

  17. Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M (2013) Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297(0):236–243

    Article  CAS  Google Scholar 

  18. Ren R, Wen Z, Cui S, Hou Y, Guo X, Chen J (2015) Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci Rep 5:10714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang W, Xing M, Zhang J (2014) A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl Catal B 160(0):240–246

    Article  CAS  Google Scholar 

  20. Zhao Z, Zhang X, Zhang G, Liu Z, Qu D, Miao X, Feng P, Sun Z (2015) Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res 8(12):4061–4071

    Article  CAS  Google Scholar 

  21. Tan H, Zhao Z, Niu M, Mao C, Cao D, Cheng D, Feng P, Sun Z (2014) A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6(17):10216–10223

    Article  CAS  PubMed  Google Scholar 

  22. Zhang H, Xing Z, Zhang Y, Li Z, Wu X, Liu C, Zhu Q, Zhou W (2015) Ni2+ and Ti3+ co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Adv 5(129):107150–107157

    Article  CAS  Google Scholar 

  23. Liu X, Xing Z, Zhang H, Wang W, Zhang Y, Li Z, Wu X, Yu X, Zhou W (2016) Fabrication of 3D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis. ChemSusChem 9(10):1118–1124

    Article  CAS  PubMed  Google Scholar 

  24. Ma C, Pang G, He G, Li Y, He C, Hao Z (2016) Layered sphere-shaped TiO2 capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation. J Environ Sci 39:77–85

    Article  Google Scholar 

  25. Mao C, Zuo F, Hou Y, Bu X, Feng P (2014) In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew Chem 126(39):10653–10657

    Article  Google Scholar 

  26. Cheng X, Cheng Q, Li B, Deng X, Li J, Wang P, Zhang B, Liu H, Wang X (2015) One-step construction of N/Ti3+ codoped TiO2 nanotubes photoelectrode with high photoelectrochemical and photoelectrocatalytic performance. Electrochim Acta 186:442–448

    Article  CAS  Google Scholar 

  27. Su J, Zou X, Zou Y, Li G, Wang P, Chen J (2013) Porous titania with heavily self-doped Ti3+ for specific sensing of CO at room temperature. Inorg Chem 52(10):5924–5930

    Article  CAS  PubMed  Google Scholar 

  28. Xing M, Zhang J, Chen F, Tian B (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun 47(17):4947–4949

    Article  CAS  Google Scholar 

  29. Lu G, Linsebigler A, Yates JT (1994) Ti3+ defect sites on TiO2(110): production and chemical detection of active sites. J Phys Chem 98(45):11733–11738

    Article  CAS  Google Scholar 

  30. Fang W, Zhou Y, Dong C, Xing M, Zhang J (2016) Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped. Catal Today 266:188–196

    Article  CAS  Google Scholar 

  31. Zhou Y, Liu Y, Liu P, Zhang W, Xing M, Zhang J (2015) A facile approach to further improve the substitution of nitrogen into reduced TiO2-x with an enhanced photocatalytic activity. Appl Catal B 170(0):66–73

    Article  CAS  Google Scholar 

  32. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6(10):3007–3014

    Article  CAS  Google Scholar 

  33. Yang C, Wang Z, Lin T, Yin H, Lü X, Wan D, Xu T, Zheng C, Lin J, Huang F, Xie X, Jiang M (2013) Core-shell nanostructured “Black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J Am Chem Soc 135(47):17831–17838

    Article  CAS  PubMed  Google Scholar 

  34. Cui H, Zhao W, Yang C, Yin H, Lin T, Shan Y, Xie Y, Gu H, Huang F (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2(23):8612–8616

    Article  CAS  Google Scholar 

  35. Zheng J, Ji G, Zhang P, Cao X, Wang B, Yu L, Xu Z (2015) Facile aluminum reduction synthesis of blue TiO2 with oxygen deficiency for lithium-ion batteries. Chemistry 21(50):18309–18315

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Z, Huang B, Meng X, Wang J, Wang S, Lou Z, Wang Z, Qin X, Zhang X, Dai Y (2013) Metallic zinc- assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem Commun 49(9):868–870

    Article  CAS  Google Scholar 

  37. Pei D, Gong L, Zhang A, Zhang X, Chen J, Mu Y, Yu H (2015) Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nat Commun 6:8696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu R, Gao S, Xu H, Wang Q, Wang Z, Huang B, Dai Y (2014) Fabrication of Ti3+ self-doped TiO2(A) nanoparticle/TiO2(R) nanorod heterojunctions with enhanced visible-light-driven photocatalytic properties. RSC Adv 4(70):37061–37069

    Article  CAS  Google Scholar 

  39. Zhao Z, Tan H, Zhao H, Lv Y, Zhou LJ, Song Y, Sun Z (2014) Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem Commun 50(21):2755–2757

    Article  CAS  Google Scholar 

  40. Chen J, Song W, Hou H, Zhang Y, Jing M, Jia X, Ji X (2015) Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv Funct Mater 25(43):6793–6801

    Article  CAS  Google Scholar 

  41. Sinhamahapatra A, Jeon JP, Yu JS (2015) A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ Sci 8(12):3539–3544

    Article  CAS  Google Scholar 

  42. Kitamura T, Shibata K, Takeda K (1993) In-flight reduction of Fe2O3, Cr2O3, TiO2 and Al2O3 by Ar-H2 and Ar-CH4 plasma. ISIJ Int 33(11):1150–1158

    Article  CAS  Google Scholar 

  43. Bullard D, Lynch D (1997) Reduction of titanium dioxide in a nonequilibrium hydrogen plasma. Metall Mater Trans B Process Metall Mater Process Sci 28(6):1069–1080

    Article  Google Scholar 

  44. Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma Process 22(3):335–350

    Article  CAS  Google Scholar 

  45. Lepcha A, Maccato C, Mettenbörger A, Andreu T, Mayrhofer L, Walter M, Olthof S, Ruoko TP, Klein A, Moseler M, Meerholz K, Morante JR, Barreca D, Mathur S (2015) Electrospun black titania nanofibers: influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance. J Phys Chem C 119(33):18835–18842

    Article  CAS  Google Scholar 

  46. An HR, Park SY, Kim H, Lee CY, Choi S, Lee SC, Seo S, Park EC, Oh YK, Song CG, Won J, Kim YJ, Lee J, Lee HU, Lee YC (2016) Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application. Sci Rep 6:29683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23(43):5444–5450

    Article  CAS  Google Scholar 

  48. Tian Z, Cui H, Zhu G, Zhao W, Xu J, Shao F, He J, Huang F (2016) Hydrogen plasma reduced black TiO2-B nanowires for enhanced photoelectrochemical water-splitting. J Power Sources 325:697–705

    Article  CAS  Google Scholar 

  49. Kim HJ, Kim J, Hong B (2013) Effect of hydrogen plasma treatment on nano-structured TiO2 films for the enhanced performance of dye-sensitized solar cell. Appl Surf Sci 274:171–175

    Article  CAS  Google Scholar 

  50. Siuzdak K, Szkoda M, Lisowska-Oleksiak A, Karczewski J, Ryl J (2016) Highly stable organic–inorganic junction composed of hydrogenated titania nanotubes infiltrated by a conducting polymer. RSC Adv 6(39):33101–33110

    Article  CAS  Google Scholar 

  51. Panomsuwan G, Watthanaphanit A, Ishizaki T, Saito N (2015) Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity. Phys Chem Chem Phys 17(21):13794–13799

    Article  CAS  PubMed  Google Scholar 

  52. Zhu W, Wang C, Chen J, Li Y, Wang J (2014) Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process. Appl Surf Sci 301:525–529

    Article  CAS  Google Scholar 

  53. Zhang Z, Hedhili MN, Zhu H, Wang P (2013) Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys Chem Chem Phys 15(37):15637–15644

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Z, Tan X, Yu T, Jia L, Huang X (2016) Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties. Int J Hydrog Energy 41(27):11634–11643

    Article  CAS  Google Scholar 

  55. Swaminathan J, Subbiah R, Singaram V (2016) Defect-rich metallic titania (TiO1.23)–an efficient hydrogen evolution catalyst for electrochemical water splitting. ACS Catal 6(4):2222–2229

    Article  CAS  Google Scholar 

  56. Mo LB, Wang Y, Bai Y, Xiang Q, Li Q, Yao W, Wang J, Ibrahim K, Wang H, Wan C, Cao J (2015) Hydrogen impurity defects in rutile TiO2. Sci Rep 5:17634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu N, Schneider C, Freitag D, Zolnhofer EM, Meyer K, Schmuki P (2016) Noble-metal-free photocatalytic H2 generation: active and inactive ‘black’ TiO2 nanotubes and synergistic effects. Chemistry 22(39):13810–13814

    Article  CAS  PubMed  Google Scholar 

  58. Chen W, He KF, Wang Y, Chan HLW, Yan Z (2013) Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature. Sci Rep 3:3149

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431–432

    Article  CAS  Google Scholar 

  60. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10(2):135–138

    Article  Google Scholar 

  61. Mezhenny S, Maksymovych P, Thompson TL, Diwald O, Stahl D, Walck SD, Yates JT Jr (2003) STM studies of defect production on the TiO2(110)-(1×1) and TiO2(110)-(1×2) surfaces induced by UV irradiation. Chem Phys Lett 369(1–2):152–158

    Article  CAS  Google Scholar 

  62. Shultz AN, Jang W, Hetherington WM, Baer DR, Wang L, Engelhard MH (1995) Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+ defects on (110) rutile TiO2 surfaces. Surf Sci 339(1–2):114–124

    Article  CAS  Google Scholar 

  63. Coronado JM, Maira AJ, Conesa JC, Yeung KL, Augugliaro V, Soria J (2001) EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 17(17):5368–5374

    Article  CAS  Google Scholar 

  64. Li L, Chen Y, Jiao S, Fang Z, Liu X, Xu Y, Pang G, Feng S (2016) Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles. Mater Design 100:235–240

    Article  CAS  Google Scholar 

  65. Wu Q, Huang F, Zhao M, Xu J, Zhou J, Wang Y (2016) Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy 24:63–71

    Article  CAS  Google Scholar 

  66. Zuo F, Bozhilov K, Dillon RJ, Wang L, Smith P, Zhao X, Bardeen C, Feng P (2012) Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem Int Ed 51(25):6223–6226

    Article  CAS  Google Scholar 

  67. Liu Y, Quan B, Ji G, Zhang H (2016) One-step synthesis of Ti3+ doped TiO2 single anatase crystals with enhanced photocatalytic activity towards degradation of methylene blue. Mater Lett 162:138–141

    Article  CAS  Google Scholar 

  68. Cai J, Za H, Lv K, Sun J, Deng K (2014) Ti powder-assisted synthesis of Ti3+ self-doped TiO2 nanosheets with enhanced visible-light photoactivity. RSC Adv 4(38):19588–19593

    Article  CAS  Google Scholar 

  69. Yang H, Sun C, Qiao S, Zou J, Liu G, Smith SC, Cheng H, Lu G (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638–641

    Article  CAS  PubMed  Google Scholar 

  70. Liu X, Gao S, Xu H, Lou Z, Wang W, Huang B, Dai Y (2013) Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity. Nanoscale 5(5):1870–1875

    Article  CAS  PubMed  Google Scholar 

  71. Liu X, Xu H, Grabstanowicz LR, Gao S, Lou Z, Wang W, Huang B, Dai Y, Xu T (2014) Ti3+ self-doped TiO2-x anatase nanoparticles via oxidation of TiH2 in H2O2. Catal Today 225(0):80–89

    CAS  Google Scholar 

  72. Wang X, Li Y, Liu X, Gao S, Huang B, Dai Y (2015) Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity. Chin J Catal 36(3):389–399

    Article  CAS  Google Scholar 

  73. Wu C, Gao Z, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y (2016) Ti3+ self-doped TiO2 photoelectrodes for photoelectrochemical water splitting and photoelectrocatalytic pollutant degradation. J Energ Chem 25(4):726–733

    Article  Google Scholar 

  74. Grabstanowicz LR, Gao S, Li T, Rickard RM, Rajh T, Liu D, Xu T (2013) Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorg Chem 52(7):3884–3890

    Article  CAS  PubMed  Google Scholar 

  75. Xin X, Xu T, Yin J, Wang L, Wang C (2015) Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Appl Catal B 176-177:354–362

    Article  CAS  Google Scholar 

  76. Zhu G, Shan Y, Lin T, Zhao W, Xu J, Tian Z, Zhang H, Zheng C, Huang F (2016) Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 8(8):4705–4712

    Article  CAS  PubMed  Google Scholar 

  77. Liu M, Qiu X, Miyauchi M, Hashimoto K (2011) Cu(II) oxide amorphous nanoclusters grafted Ti3+ self-doped TiO2: an efficient visible light photocatalyst. Chem Mater 23(23):5282–5286

    Article  CAS  Google Scholar 

  78. Fang W, Khrouz L, Zhou Y, Shen B, Dong C, Xing M, Mishra S, Daniele S, Zhang J (2017) Reduced {001}-TiO2-x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution. Phys Chem Chem Phys 19(21):13875–13881

    Article  CAS  PubMed  Google Scholar 

  79. Zhu Q, Peng Y, Lin L, Fan C, Gao G, Wang R, Xu A (2014) Stable blue TiO2-x nanoparticles for efficient visible light photocatalysts. J Mater Chem A 2(12):4429–4437

    Article  CAS  Google Scholar 

  80. Qiu M, Tian Y, Chen Z, Yang Z, Li W, Wang K, Wang L, Wang K, Zhang W (2016) Synthesis of Ti3+ self-doped TiO2 nanocrystals based on Le Chatelier’s principle and their application in solar light photocatalysis. RSC Adv 6(78):74376–74383

    Article  CAS  Google Scholar 

  81. Chen X, Liu L, Liu Z, Marcus MA, Wang W, Oyler NA, Grass ME, Mao B, Glans PA, Yu P, Guo J, Mao S (2013) Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 3:1510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal Santo V (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134(18):7600–7603

    Article  CAS  PubMed  Google Scholar 

  83. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2(3):637–644

    Article  CAS  Google Scholar 

  84. Liu Y, Wang J, Yang P, Matras-Postolek K (2015) Self-modification of TiO2 one-dimensional nano-materials by Ti3+ and oxygen vacancy using Ti2O3 as precursor. RSC Adv 5(76):61657–61663

    Article  CAS  Google Scholar 

  85. Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132(34):11856–11857

    Article  CAS  PubMed  Google Scholar 

  86. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  CAS  Google Scholar 

  87. Fang W, Dappozze F, Guillard C, Zhou Y, Xing M, Mishra S, Daniele S, Zhang J (2017) Zn-assisted TiO2-x photocatalyst with efficient charge separation for enhanced photocatalytic activities. J Phys Chem C 121:17068

    Article  CAS  Google Scholar 

  88. Livraghi S, Chiesa M, Paganini MC, Giamello E (2011) On the nature of reduced states in titanium dioxide as monitored by electron paramagnetic resonance. I: the anatase case. J Phys Chem C 115(51):25413–25421

    Article  CAS  Google Scholar 

  89. Sekiya T, Kurita S (2008) Defects in anatase titanium dioxide. In: Ohno K, Tanaka M, Takeda J, Kawazoe Y (eds) Nano- and micromaterials, vol 9. Springer, Berlin/Heidelberg, pp 121–141

    Chapter  Google Scholar 

  90. Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M, Zhang J (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Giannakas AE, Antonopoulou M, Deligiannakis Y, Konstantinou I (2013) Preparation, characterization of N-I co-doped TiO2 and catalytic performance toward simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl Catal B 140:636–645

    Article  CAS  Google Scholar 

  92. Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlström E, Rasmussen MD, Thostrup P, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf Sci 598(1–3):226–245

    Article  CAS  Google Scholar 

  93. Fischer S, Schierbaum K-D, Göpel W (1997) Surface defects and platinum overlayers on TiO2(110) surfaces: STM and photoemission studies. Vacuum 48(7–9):601–605

    Article  CAS  Google Scholar 

  94. Chen C, Chen T, Chen C, Lai Y, You J, Chou T, Chen C, Lee J (2012) Effect of Ti3+ on TiO2-supported Cu catalysts used for CO oxidation. Langmuir 28(26):9996–10006

    Article  CAS  PubMed  Google Scholar 

  95. Zhang C, Xie Y, Ma J, Hu J, Zhang C (2015) A composite catalyst of reduced black TiO2-x/CNT: a highly efficient counter electrode for ZnO-based dye-sensitized solar cells. Chem Commun 51(98):17459–17462

    Article  CAS  Google Scholar 

  96. Liao W, Murugananthan M, Zhang Y (2015) Synthesis of Z-scheme g-C3N4-Ti3+/TiO2 material: an efficient visible light photoelectrocatalyst for degradation of phenol. Phys Chem Chem Phys 17(14):8877–8884

    Article  CAS  PubMed  Google Scholar 

  97. Ioannidou E, Ioannidi A, Frontistis Z, Antonopoulou M, Tselios C, Tsikritzis D, Konstantinou I, Kennou S, Kondarides DI, Mantzavinos D (2016) Correlating the properties of hydrogenated titania to reaction kinetics and mechanism for the photocatalytic degradation of bisphenol A under solar irradiation. Appl Catal B 188:65–76

    Article  CAS  Google Scholar 

  98. Qin X, He F, Chen L, Meng Y, Liu J, Zhao N, Huang Y (2016) Oxygen-vacancy modified TiO2 nanoparticles as enhanced visible-light driven photocatalysts by wrapping and chemically bonding with graphite-like carbon. RSC Adv 6(13):10887–10894

    Article  CAS  Google Scholar 

  99. Xing M, Li X, Zhang J (2014) Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite. Sci Rep 4:5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang J, Yang P, Huang B (2015) Self-doped TiO2-x nanowires with enhanced photocatalytic activity: facile synthesis and effects of the Ti3+. Appl Surf Sci 356:391–398

    Article  CAS  Google Scholar 

  101. Liu N, Schneider C, Freitag D, Hartmann M, Venkatesan U, Müller J, Spiecker E, Schmuki P (2014) Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett 14(6):3309–3313

    Article  CAS  PubMed  Google Scholar 

  102. Yan X, Xing Z, Cao Y, Hu M, Li Z, Wu X, Zhu Q, Yang S, Zhou W (2017) In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts. Appl Catal B 219:572–579

    Article  CAS  Google Scholar 

  103. Zheng J, Bao S, Zhang X, Wu H, Chen R, Jin P (2016) Pd–MgNix nanospheres/black-TiO2 porous films with highly efficient hydrogen production by near-complete suppression of surface recombination. Appl Catal B 183:69–74

    Article  CAS  Google Scholar 

  104. Liu L, Zhao C, Li Y (2012) Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2–x nanoparticles at room temperature. J Phys Chem C 116(14):7904–7912

    Article  CAS  Google Scholar 

  105. Sasan K, Zuo F, Wang Y, Feng P (2015) Self-doped Ti3+-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation. Nanoscale 7(32):13369–13372

    Article  CAS  PubMed  Google Scholar 

  106. Zhang L, Wang W, Jiang D, Gao E, Sun S (2015) Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res 8(3):821–831

    Article  CAS  Google Scholar 

  107. Yin G, Bi Q, Zhao W, Xu J, Lin T, Huang F (2017) Efficient conversion of CO2 to methane Photocatalyzed by conductive black titania. ChemCatChem:n/a-n/a

    Google Scholar 

  108. Fu R, Wang Q, Gao S, Wang Z, Huang B, Dai Y, Lu J (2015) Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides. J Power Sources 285:449–459

    Article  CAS  Google Scholar 

  109. Li K, Huang Z, Zeng X, Huang B, Gao S, Lu J (2017) Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Appl Mater Interfaces 9(13):11577–11586

    Article  CAS  PubMed  Google Scholar 

  110. Zhu Y, Shah MW, Wang C (2017) Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2-x heterojunction. Appl Catal B 203:526–532

    Article  CAS  Google Scholar 

  111. Zhang X, Zuo G, Lu X, Tang C, Cao S, Yu M (2017) Anatase TiO2 sheet-assisted synthesis of Ti3+ self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: roles of anatase TiO2 sheet. J Colloid Interface Sci 490:774–782

    Article  CAS  PubMed  Google Scholar 

  112. Duan Y, Zhang M, Wang L, Wang F, Yang L, Li X, Wang C (2017) Plasmonic Ag-TiO2−x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: the role of oxygen vacancies. Appl Catal B 204:67–77

    Article  CAS  Google Scholar 

  113. Singh AP, Kodan N, Mehta BR, Dey A, Krishnamurthy S (2016) In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties. Mater Res Bull 76:284–291

    Article  CAS  Google Scholar 

  114. Zhang Q, Wang L, Feng J, Xu H, Yan W (2014) Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO2 nanotube arrays. Phys Chem Chem Phys 16(42):23431–23439

    Article  CAS  PubMed  Google Scholar 

  115. Zheng J, Liu Y, Ji G, Zhang P, Cao X, Wang B, Zhang C, Zhou X, Zhu Y, Shi D (2015) Hydrogenated oxygen-deficient blue anatase as anode for high-performance lithium batteries. ACS Appl Mater Inter 7(42):23431–23438

    Article  CAS  Google Scholar 

  116. Wang C, Wang F, Zhao Y, Li Y, Yue Q, Liu Y, Liu Y, Elzatahry AA, Al-Enizi A, Wu Y, Deng Y, Zhao D (2016) Hollow TiO2-x porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Res 9(1):165–173

    Article  CAS  Google Scholar 

  117. Shang M, Hu H, Lu G, Bi Y (2016) Synergistic effects of SrTiO3 nanocubes and Ti3+ dual-doping for highly improved photoelectrochemical performance of TiO2 nanotube arrays under visible light. J Mater Chem A 4(16):5849–5853

    Article  CAS  Google Scholar 

  118. Su T, Yang Y, Na Y, Fan R, Li L, Wei L, Yang B, Cao W (2015) An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl Mater Inter 7(6):3754–3763

    Article  CAS  Google Scholar 

  119. Pan S, Liu X, Guo M, Sf Y, Huang H, Fan H, Li G (2015) Engineering the intermediate band states in amorphous Ti3+-doped TiO2 for hybrid dye-sensitized solar cell applications. J Mater Chem A 3(21):11437–11443

    Article  CAS  Google Scholar 

  120. Byeon A, Boota M, Beidaghi M, Aken KV, Lee JW, Gogotsi Y (2015) Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochem Commun 60:199–203

    Article  CAS  Google Scholar 

  121. Sang-Joon P, Jeong-Pyo L, Jong Shik J, Hyun R, Hyunung Y, Byung Youn Y, Chang Soo K, Kyung Joong K, Yong Jai C, Sunggi B, Woo L (2013) In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices. Nanotechnology 24(29):295202

    Article  CAS  Google Scholar 

  122. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682

    Article  CAS  PubMed  Google Scholar 

  123. Chen J, Ding Z, Wang C, Hou H, Zhang Y, Wang C, Zou G, Ji X (2016) Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl Mater Inter 8(14):9142–9151

    Article  CAS  Google Scholar 

  124. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  CAS  PubMed  Google Scholar 

  125. Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109(23):11414–11419

    Article  PubMed  CAS  Google Scholar 

  126. Sayed FN, Jayakumar OD, Sasikala R, Kadam RM, Bharadwaj SR, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal JP, Tyagi AK (2012) Photochemical hydrogen generation using nitrogen-doped TiO2-Pd nanoparticles: facile synthesis and effect of Ti3+ incorporation. J Phys Chem C 116(23):12462–12467

    Article  CAS  Google Scholar 

  127. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134(8):3659–3662

    Article  CAS  PubMed  Google Scholar 

  128. Zhou Y, Yi Q, Xing M, Shang L, Zhang T, Zhang J (2016) Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chem Commun 52(8):1689–1692

    Article  CAS  Google Scholar 

  129. Chen Y, Cao X, Lin B, Gao B (2013) Origin of the visible-light photoactivity of NH3-treated TiO2: effect of nitrogen doping and oxygen vacancies. Appl Surf Sci 264:845–852

    Article  CAS  Google Scholar 

  130. Zhang K, Zhou W, Chi L, Zhang X, Hu W, Jiang B, Pan K, Tian G, Jiang Z (2016) Black N/H-TiO2 nanoplates with a flower-like hierarchical architecture for photocatalytic hydrogen evolution. ChemSusChem 9(19):2841–2848

    Article  CAS  PubMed  Google Scholar 

  131. Li B, Zhao Z, Zhou Q, Meng B, Meng X, Qiu J (2014) Highly efficient low-temperature plasma-assisted modification of TiO2 nanosheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem Eur J 20(45):14763–14770

    Article  CAS  PubMed  Google Scholar 

  132. Li G, Li J, Li G, Jiang G (2015) N and Ti3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity. J Mater Chem A 3(44):22073–22080

    Article  CAS  Google Scholar 

  133. Lin T, Yang C, Wang Z, Yin H, Lu X, Huang F, Lin J, Xie X, Jiang M (2014) Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ Sci 7(3):967–972

    Article  CAS  Google Scholar 

  134. Feng N, Liu F, Huang M, Zheng A, Wang Q, Chen T, Cao G, Xu J, Fan J, Deng F (2016) Unravelling the efficient photocatalytic activity of boron-induced Ti3+ species in the surface layer of TiO2. Sci Rep 6:34765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xing M, Zhang J, Qiu B, Tian B, Anpo M, Che M (2015) A brown mesoporous TiO2-x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 11(16):1920–1929

    Article  CAS  PubMed  Google Scholar 

  136. Xing J, Chen J, Li Y, Yuan W, Zhou Y, Zheng L, Wang H, Hu P, Wang Y, Zhao H, Wang Y, Yang H (2014) Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem Eur J 20(8):2138–2144

    Article  CAS  PubMed  Google Scholar 

  137. Yuan X, Wang X, Liu X, Ge H, Yin G, Dong C, Huang F (2016) Ti3+-promoted high oxygen-reduction activity of Pd nanodots supported by black titania nanobelts. ACS Appl Mater Inter 8(41):27654–27660

    Article  CAS  Google Scholar 

  138. Bonneviot L, Haller GL (1988) EPR characterization of Ti3+ ions at the metal-support interface in PtTiO2 catalysts. J Catal 113(1):96–105

    Article  CAS  Google Scholar 

  139. Lian Z, Wang W, Li G, Tian F, Schanze KS, Li H (2016) Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution. ACS Appl Mater Inter

    Google Scholar 

  140. Pillay D, Hwang GS (2005) Growth and structure of small gold particles on rutile TiO2(110). Phys Rev B 72(20):205422

    Article  CAS  Google Scholar 

  141. Albuquerque AR, Bruix A, dos Santos IMG, Sambrano JR, Illas F (2014) DFT study on Ce-doped anatase TiO2: nature of Ce3+ and Ti3+ centers triggered by oxygen vacancy formation. J Phys Chem C 118(18):9677–9689

    Article  CAS  Google Scholar 

  142. Bennett T, Adnan RH, Alvino JF, Kler R, Golovko VB, Metha GF, Andersson GG (2015) Effect of gold nanoclusters on the production of Ti3+ defect sites in titanium dioxide nanoparticles under ultraviolet and soft X-ray radiation. J Phys Chem C 119(20):11171–11177

    Article  CAS  Google Scholar 

  143. Zhao J, Li Y, Zhu Y, Wang Y, Wang C (2016) Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: role of metallic Cu. Appl Catal A-Gen 510:34–41

    Article  CAS  Google Scholar 

  144. Pan X, Xu YJ (2013) Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO2: a novel strategy to design defect-based composite photocatalyst. Appl Catal A-Gen 459:34–40

    Article  CAS  Google Scholar 

  145. Chen P (2016) A novel synthesis of Ti3+ self-doped Ag2O/TiO2(p–n) nanoheterojunctions for enhanced visible photocatalytic activity. Mater Lett 163:130–133

    Article  CAS  Google Scholar 

  146. Li M, Liu H, Liu T, Qin Y (2017) Design of a novel dual Z-scheme photocatalytic system composited of Ag2O modified Ti3+ self doped TiO2 nanocrystals with individual exposed (001) and (101) facets. Mater Charact 124:136–144

    Article  CAS  Google Scholar 

  147. Cui Y, Ma Q, Deng X, Meng Q, Cheng X, Xie M, Li X, Cheng Q, Liu H (2017) Fabrication of Ag-Ag2O/reduced TiO2 nanophotocatalyst and its enhanced visible light driven photocatalytic performance for degradation of diclofenac solution. Appl Catal B 206:136–145

    Article  CAS  Google Scholar 

  148. Yin H, Wang X, Wang L, Nie Q, Zhang Y, Yuan Q, Wu W (2016) Ag/AgCl modified self-doped TiO2 hollow sphere with enhanced visible light photocatalytic activity. J Alloys Compd 657:44–52

    Article  CAS  Google Scholar 

  149. Colón G, Maicu M, Hidalgo MC, Navío JA (2006) Cu-doped TiO2 systems with improved photocatalytic activity. Appl Catal B 67(1–2):41–51

    Article  CAS  Google Scholar 

  150. Liu L, Gao F, Zhao L, Li Y (2013) Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl Catal B 134(0):349–358

    Article  CAS  Google Scholar 

  151. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  152. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  PubMed  Google Scholar 

  153. Wang C, Meng D, Sun J, Memon J, Huang Y, Geng J (2014) Graphene wrapped TiO2 based catalysts with enhanced photocatalytic activity. Adv Mater Interfaces 1(4):1300150

    Article  CAS  Google Scholar 

  154. Li L, Yu L, Lin Z, Yang G (2016) Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts. ACS Appl Mater Inter 8(13):8536–8545

    Article  CAS  Google Scholar 

  155. Cao S, Liu T, Tsang Y, Chen C (2016) Role of hydroxylation modification on the structure and property of reduced graphene oxide/TiO2 hybrids. Appl Surf Sci 382:225–238

    Article  CAS  Google Scholar 

  156. Fu G, Zhou P, Zhao M, Zhu W, Yan S, Yu T, Zou Z (2015) Carbon coating stabilized Ti3+-doped TiO2 for photocatalytic hydrogen generation under visible light irradiation. Dalton Trans 44(28):12812–12817

    Article  CAS  PubMed  Google Scholar 

  157. Liu Y, Xing M, Zhang J (2014) Ti3+ and carbon co-doped TiO2 with improved visible light photocatalytic activity. Chin J Catal 35(9):1511–1519

    Article  CAS  Google Scholar 

  158. Yi Q, Zhou Y, Xing M, Zhang J (2016) Vacuum activation-induced Ti3+ and carbon co-doped TiO2 with enhanced solar light photo-catalytic activity. Res Chem Intermed 42(5):4181–4189

    Article  CAS  Google Scholar 

  159. Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2015) In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Inter 7(17):9023–9030

    Article  CAS  Google Scholar 

  160. Lu D, Zhang G, Wan Z (2015) Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction. Appl Surf Sci 358:223–230

    Article  CAS  Google Scholar 

  161. Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W (2017) Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Appl Catal B 201:119–127

    Article  CAS  Google Scholar 

  162. Wen M, Zhang S, Dai W, Li G, Zhang D (2015) In situ synthesis of Ti3+ self-doped mesoporous TiO2 as a durable photocatalyst for environmental remediation. Chin J Catal 36(12):2095–2102

    Article  CAS  Google Scholar 

  163. Wei S, Wu R, Xu X, Jian J, Wang H, Sun Y (2016) One-step synthetic approach for core-shelled black anatase titania with high visible light photocatalytic performance. Chem Eng J 299:120–125

    Article  CAS  Google Scholar 

  164. Wang S, Yang X, Wang Y, Liu L, Guo Y, Guo H (2014) Morphology-controlled synthesis of Ti3+ self-doped yolk-shell structure titanium oxide with superior photocatalytic activity under visible light. J Solid State Chem 213:98–103

    Article  CAS  Google Scholar 

  165. Zhu G, Xu J, Zhao W, Huang F (2016) Constructing black titania with unique nanocage structure for solar desalination. ACS Appl Mater Inter 8(46):31716–31721

    Article  CAS  Google Scholar 

  166. Qi D, Lu L, Xi Z, Wang L, Zhang J (2014) Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl Catal B 160:621–628

    Article  CAS  Google Scholar 

  167. Xin L, Liu X (2015) Black TiO2 inverse opals for visible-light photocatalysis. RSC Adv 5(88):71547–71550

    Article  CAS  Google Scholar 

  168. Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842

    Article  CAS  PubMed  Google Scholar 

  169. Xing M, Yang B, Yu H, Tian B, Bagwasi S, Zhang J, Gong X (2013) Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J Phys Chem Lett 4(22):3910–3917

    Article  CAS  Google Scholar 

  170. Si L, Huang Z, Lv K, Tang D, Yang C (2014) Facile preparation of Ti3+ self-doped TiO2 nanosheets with dominant {001} facets using zinc powder as reductant. J Alloys Compd 601:88–93

    Article  CAS  Google Scholar 

  171. Wang W, Lu C, Ni Y, Song J, Su M, Xu Z (2012) Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+. Catal Commun 22(0):19–23

    Article  CAS  Google Scholar 

  172. Wang W, Ni Y, Lu C, Xu Z (2012) Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytic activity. RSC Adv 2(22):8286–8288

    Article  CAS  Google Scholar 

  173. Chen S, Li D, Liu Y, Huang W (2016) Morphology-dependent defect structures and photocatalytic performance of hydrogenated anatase TiO2 nanocrystals. J Catal 341:126–135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J. (2018). Preparation of Reduced TiO2–x for Photocatalysis. In: Photocatalysis. Lecture Notes in Chemistry, vol 100. Springer, Singapore. https://doi.org/10.1007/978-981-13-2113-9_4

Download citation

Publish with us

Policies and ethics