Skip to main content

Neuroanesthesia and Coexisting Respiratory Problems

  • Chapter
  • First Online:
Co-existing Diseases and Neuroanesthesia

Abstract

The respiratory and nervous systems interact to regulate numerous physiological processes in the brain and spinal cord. Disorders of the respiratory system are common in the neurosurgical patient, and the perioperative care of these patients requires an in-depth understanding of how respiratory dysfunction affects neurophysiology and postoperative outcomes. A diligent preoperative workup and optimization is essential to minimize the risk of perioperative complications. Complications associated with respiratory dysfunction can be severe and even life-threatening and must be promptly recognized and treated. In this chapter, we review the considerations for the perioperative management of the neurosurgical patient with coexisting respiratory disease. Specifically, we address relevant anatomy and physiology principles, perioperative considerations for the neurosurgical patient, and we highlight important perioperative respiratory complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siesjo BK, Siesjo P. Mechanisms of secondary brain injury. Eur J Anaesthesiol. 1996;13(3):247–68.

    Article  CAS  Google Scholar 

  2. Levy LL, et al. Cerebral blood flow regulation: vascular resistance adjustments in the circle of Willis. Stroke. 1976;7(2):147–50.

    Article  CAS  Google Scholar 

  3. Paulson OB, et al. Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab. 2010;30(1):2–14.

    Article  Google Scholar 

  4. Vantanajal JS, et al. Differential sensitivities of cerebral and brachial blood flow to hypercapnia in humans. J Appl Physiol. 2007;102(1):87–93.

    Article  Google Scholar 

  5. Ainslie PN, Poulin MJ. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol. 2004;97(1):149–59.

    Article  Google Scholar 

  6. Beaudin AE, et al. Cerebral and myocardial blood flow responses to hypercapnia and hypoxia in humans. Am J Phys Heart Circ Phys. 2011;301(4):H1678–86.

    CAS  Google Scholar 

  7. Brugniaux JV, et al. Cerebrovascular responses to altitude. Respir Physiol Neurobiol. 2007;158(2):212–23.

    Article  Google Scholar 

  8. Heindl S, et al. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med. 2001;164(4):597–601.

    Article  CAS  Google Scholar 

  9. Poulin MJ, Liang PJ, Robbins PA. Fast and slow components of cerebral blood flow response to step decreases in end-tidal PCO2 in humans. J Appl Physiol (1985). 1998;85(2):388–97.

    Article  CAS  Google Scholar 

  10. Poulin MJ, Liang PJ, Robbins PA. Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. J Appl Physiol (1985). 1996;81(3):1084–95.

    Article  CAS  Google Scholar 

  11. Steinback CD, Poulin MJ. Influence of hypoxia on cerebral blood flow regulation in humans. In: Roach RC, Hackett PH, Wagner PD, editors. Hypoxia: translation in progress. Boston, MA: Springer; 2016. p. 131–44.

    Chapter  Google Scholar 

  12. Beaudin AE, et al. Human cerebral blood flow control during hypoxia: focus on chronic pulmonary obstructive disease and obstructive sleep apnea. J Appl Physiol (1985). 2017;123(5):1350–61.

    Article  Google Scholar 

  13. Gordon GRJ, Howarth C, MacVicar BA. Bidirectional control of arteriole diameter by astrocytes. Exp Physiol. 2011;96(4):393–9.

    Article  CAS  Google Scholar 

  14. Ide K, Eliasziw M, Poulin MJ. Relationship between middle cerebral artery blood velocity and end-tidal PCO2 in the hypocapnic-hypercapnic range in humans. J Appl Physiol. 2003;95(1):129–37.

    Article  Google Scholar 

  15. Kulandavelu S, Balkan W, Hare JM. Regulation of oxygen delivery to the body via hypoxic vasodilation. Proc Natl Acad Sci U S A. 2015;112(20):6254–5.

    Article  CAS  Google Scholar 

  16. Andresen J, Shafi NI, Bryan RM Jr. Endothelial influences on cerebrovascular tone. J Appl Physiol. 2006;100(1):318–27.

    Article  CAS  Google Scholar 

  17. Lambertsen CJ, et al. H and pCO2 as chemical factors in respiratory and cerebral circulatory control. J Appl Physiol. 1961;16:473–84.

    Article  CAS  Google Scholar 

  18. Harper AM, Bell RA. The effect of metabolic acidosis and alkalosis on the blood flow through the cerebral cortex. J Neurol Neurosurg Psychiatry. 1963;26:341–4.

    Article  CAS  Google Scholar 

  19. Severinghaus JW, Lassen N. Step hypocapnia to separate arterial from tissue PCO2 in the regulation of cerebral blood flow. Circ Res. 1967;20(2):272–8.

    Article  CAS  Google Scholar 

  20. Lassen NA. Brain extracellular pH: the main factor controlling cerebral blood flow. Scand J Clin Lab Invest. 1968;22(4):247–51.

    Article  CAS  Google Scholar 

  21. Willie CK, et al. Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol. 2012;590.(Pt 14:3261–75.

    Article  CAS  Google Scholar 

  22. Nau R, et al. Entry of tromethamine into the cerebrospinal fluid of humans after cerebrovascular events. Clin Pharmacol Ther. 1999;66(1):25–32.

    Article  CAS  Google Scholar 

  23. Anderson RE, Meyer FB. Protection of focal cerebral ischemia by alkalinization of systemic pH. Neurosurgery. 2002;51(5):1256–65; discussion 1265–6.

    Article  Google Scholar 

  24. Qaseem A, et al. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: a guideline from the American College of Physicians. Ann Intern Med. 2006;144(8):575–80.

    Article  Google Scholar 

  25. Bluman LG, et al. Preoperative smoking habits and postoperative pulmonary complications. Chest. 1998;113(4):883–9.

    Article  CAS  Google Scholar 

  26. Ngaage DL, et al. The impact of the duration of mechanical ventilation on the respiratory outcome in smokers undergoing cardiac surgery. Cardiovasc Surg. 2002;10(4):345–50.

    Article  CAS  Google Scholar 

  27. Yousefzadeh A, et al. Smoking cessation: the role of the anesthesiologist. Anesth Analg. 2016;122(5):1311–20.

    Article  Google Scholar 

  28. Vafaee MS, et al. Smoking normalizes cerebral blood flow and oxygen consumption after 12-hour abstention. J Cereb Blood Flow Metab. 2015;35(4):699–705.

    Article  CAS  Google Scholar 

  29. Myles PS, et al. Effectiveness of bupropion as an aid to stopping smoking before elective surgery: a randomised controlled trial. Anaesthesia. 2004;59(11):1053–8.

    Article  CAS  Google Scholar 

  30. Willie CK, et al. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–59.

    Article  CAS  Google Scholar 

  31. Kane B, et al. Emergency oxygen therapy: from guideline to implementation. Breathe. 2013;9(4):246.

    Article  Google Scholar 

  32. Murphy R, Driscoll P, O’Driscoll R. Emergency oxygen therapy for the COPD patient. Emerg Med J. 2001;18(5):333–9.

    Article  CAS  Google Scholar 

  33. Chen H, et al. Effects of increased positive end-expiratory pressure on intracranial pressure in acute respiratory distress syndrome: a protocol of a prospective physiological study. BMJ Open. 2016;6(11):e012477.

    Article  Google Scholar 

  34. Schulz-Stubner S, Thiex R. Raising the head-of-bed by 30 degrees reduces ICP and improves CPP without compromising cardiac output in euvolemic patients with traumatic brain injury and subarachnoid haemorrhage: a practice audit. Eur J Anaesthesiol. 2006;23(2):177–80.

    Article  CAS  Google Scholar 

  35. Domino KB, et al. Hypocapnia worsens arterial blood oxygenation and increases VA/Q heterogeneity in canine pulmonary edema. Anesthesiology. 1993;78(1):91–9.

    Article  CAS  Google Scholar 

  36. Khetarpal R, et al. Anesthetic considerations in the patients of chronic obstructive pulmonary disease undergoing laparoscopic surgeries. Anesth Essays Res. 2016;10(1):7–12.

    Article  Google Scholar 

  37. Zeiler FA, et al. The ketamine effect on intracranial pressure in nontraumatic neurological illness. J Crit Care. 2014;29(6):1096–106.

    Article  CAS  Google Scholar 

  38. Wang X, et al. Ketamine does not increase intracranial pressure compared with opioids: meta-analysis of randomized controlled trials. J Anesth. 2014;28(6):821–7.

    Article  Google Scholar 

  39. Zeiler FA, et al. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care. 2014;21(1):163–73.

    Article  CAS  Google Scholar 

  40. Yu S-B. Dexmedetomidine sedation in ICU. Korean J Anesthesiol. 2012;62(5):405–11.

    Article  CAS  Google Scholar 

  41. Wu J, et al. Neuroprotective effect of dexmedetomidine in a murine model of traumatic brain injury. Sci Rep. 2018;8(1):4935.

    Article  Google Scholar 

  42. Satoh JI, et al. Desflurane but not sevoflurane can increase lung resistance via tachykinin pathways. Br J Anaesth. 2009;102(5):704–13.

    Article  CAS  Google Scholar 

  43. Freeman BS. Nitrous oxide and closed spaces. In: Freeman BS, Berger JS, editors. Anesthesiology core review: Part one Basic exam. New York: McGraw-Hill Education; 2014.

    Google Scholar 

  44. Dueck MDR, et al. Altered distribution of pulmonary ventilation and blood flow following induction of inhalational anesthesia. Anesthesiology. 1980;52(2):126–30.

    Article  Google Scholar 

  45. Kodra N, Shpata V, Ohri I. Risk factors for postoperative pulmonary complications after abdominal surgery. Open Access Maced J Med Sci. 2016;4(2):259–63.

    Article  Google Scholar 

  46. Numata T, et al. Risk factors of postoperative pulmonary complications in patients with asthma and COPD. BMC Pulm Med. 2018;18:4.

    Article  Google Scholar 

  47. DiMarco AF, Dawson NV. Risk factors for mortality in spinal cord injury. J Spinal Cord Med. 2014;37(6):670–1.

    Article  Google Scholar 

  48. MacCallum NS, Evans TW. Epidemiology of acute lung injury. Curr Opin Crit Care. 2005;11(1):43–9.

    Article  Google Scholar 

  49. Blank R, Napolitano LM. Epidemiology of ARDS and ALI. Crit Care Clin. 2011;27(3):439–58.

    Article  Google Scholar 

  50. Hendrickson CM, et al. The acute respiratory distress syndrome following isolated severe traumatic brain injury. J Trauma Acute Care Surg. 2016;80(6):989–97.

    Article  Google Scholar 

  51. Zilberberg MD, Epstein SK. Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1159–64.

    Article  CAS  Google Scholar 

  52. Hudson LD, et al. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(2 Pt 1):293–301.

    Article  CAS  Google Scholar 

  53. Windsor AC, et al. Role of the neutrophil in adult respiratory distress syndrome. Br J Surg. 1993;80(1):10–7.

    Article  CAS  Google Scholar 

  54. Donnelly SC, et al. Plasma elastase levels and the development of the adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(5):1428–33.

    Article  CAS  Google Scholar 

  55. Hughes KT, Beasley MB. Pulmonary manifestations of acute lung injury: more than just diffuse alveolar damage. Arch Pathol Lab Med. 2017;141(7):916–22.

    Article  Google Scholar 

  56. Orme J Jr, et al. Pulmonary function and health-related quality of life in survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167(5):690–4.

    Article  Google Scholar 

  57. Mackiewicz-Milewska M, et al. Deep venous thrombosis in patients with chronic spinal cord injury. J Spinal Cord Med. 2016;39(4):400–4.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Garrett Sendlewski, Yale Media Laboratory Associate, for his outstanding illustrative work in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun E. Gruenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gruenbaum, S.E., Sandhu, M.R.S., Bilotta, F., Kurup, V. (2019). Neuroanesthesia and Coexisting Respiratory Problems. In: Prabhakar, H., Singhal, V., Gupta, N. (eds) Co-existing Diseases and Neuroanesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-13-2086-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2086-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2085-9

  • Online ISBN: 978-981-13-2086-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics