Skip to main content

Neuromodulation for Pain Management

  • Chapter
  • First Online:
Neural Interface: Frontiers and Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1101))

Abstract

Pain is a salient and complex sensory experience with important affective and cognitive dimensions. The current definition of pain relies on subjective reports in both humans and experimental animals. Such definition lacks basic mechanistic insights and can lead to a high degree of variability. Research on biomarkers for pain has previously focused on genetic analysis. However, recent advances in human neuroimaging and research in animal models have begun to show the promise of a circuit-based neural signature for pain. At the treatment level, pharmacological therapy for pain remains limited. Neuromodulation has emerged as a specific form of treatment without the systemic side effects of pharmacotherapies. In this review, we will discuss some of the current neuromodulatory modalities for pain, research on newer targets, as well as emerging possibility for an integrated brain-computer interface approach for pain management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150(3699):971–979

    Article  CAS  PubMed  Google Scholar 

  2. Deer TR et al (2014) The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation 17(6):515–550. discussion 550

    Article  PubMed  Google Scholar 

  3. Liem L et al (2015) One-year outcomes of spinal cord stimulation of the dorsal root ganglion in the treatment of chronic neuropathic pain. Neuromodulation 18(1):41–48. discussion 48-9

    Article  PubMed  Google Scholar 

  4. De Ridder D et al (2013) Burst spinal cord stimulation for limb and back pain. World Neurosurg 80(5):642–649 e1

    Article  PubMed  Google Scholar 

  5. De Ridder D et al (2010) Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery 66(5):986–990

    Article  PubMed  Google Scholar 

  6. Van Buyten JP et al (2013) High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation 16(1):59–65. discussion 65-6

    Article  PubMed  Google Scholar 

  7. Tiede J et al (2013) Novel spinal cord stimulation parameters in patients with predominant back pain. Neuromodulation 16(4):370–375

    Article  PubMed  Google Scholar 

  8. Taylor RS et al (2014) Predictors of pain relief following spinal cord stimulation in chronic back and leg pain and failed back surgery syndrome: a systematic review and meta-regression analysis. Pain Pract 14(6):489–505

    Article  PubMed  Google Scholar 

  9. Grider JS et al (2016) Effectiveness of spinal cord stimulation in chronic spinal pain: a systematic review. Pain Physician 19(1):E33–E54

    PubMed  Google Scholar 

  10. Deer TR et al (2014) The appropriate use of neurostimulation: avoidance and treatment of complications of neurostimulation therapies for the treatment of chronic pain. Neuromodulation 17(6):571–598

    Article  PubMed  Google Scholar 

  11. Levy RM, Lamb S, Adams JE (1987) Treatment of chronic pain by deep brain stimulation: long term follow-up and review of the literature. Neurosurgery 21(6):885–893

    Article  CAS  PubMed  Google Scholar 

  12. Turnbull IM (1972) Bilateral cingulumotomy combined with thalamotomy or mesencephalic tractotomy for pain. Surg Gynecol Obstet 134(6):958–962

    CAS  PubMed  Google Scholar 

  13. Craig AD et al (1996) Functional imaging of an illusion of pain. Nature 384(6606):258–260

    Article  CAS  PubMed  Google Scholar 

  14. Rainville P et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–971

    Article  CAS  PubMed  Google Scholar 

  15. Foltz EL, White LE (1968) The role of rostral cingulumotomy in “pain” relief. Int J Neurol 6(3–4):353–373

    CAS  PubMed  Google Scholar 

  16. Talbot JD et al (1995) Evaluation of pain perception after anterior capsulotomy: a case report. Somatosens Mot Res 12(2):115–126

    Article  CAS  PubMed  Google Scholar 

  17. Koyama T, Kato K, Mikami A (2000) During pain-avoidance neurons activated in the macaque anterior cingulate and caudate. Neurosci Lett 283(1):17–20

    Article  CAS  PubMed  Google Scholar 

  18. Koyama T et al (2001) Anterior cingulate activity during pain-avoidance and reward tasks in monkeys. Neurosci Res 39(4):421–430

    Article  CAS  PubMed  Google Scholar 

  19. Qu C et al (2011) Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain 152(7):1641–1648

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johansen JP, Fields HL, Manning BH (2001) The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A 98(14):8077–8082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. LaGraize SC et al (2006) Selective regulation of pain affect following activation of the opioid anterior cingulate cortex system. Exp Neurol 197(1):22–30

    Article  CAS  PubMed  Google Scholar 

  22. Lubar JF (1964) Effect of medial cortical lesions on the avoidance behavior of the cat. J Comp Physiol Psychol 58:38–46

    Article  CAS  PubMed  Google Scholar 

  23. Lewin W, Whitty CW (1960) Effects of anterior cingulate stimulation in conscious human subjects. J Neurophysiol 23:445–447

    Article  CAS  PubMed  Google Scholar 

  24. Boccard SG et al (2013) Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery 72(2):221–230. discussion 231

    Article  PubMed  Google Scholar 

  25. Spooner J et al (2007) Neuromodulation of the cingulum for neuropathic pain after spinal cord injury. Case report. J Neurosurg 107(1):169–172

    Article  PubMed  Google Scholar 

  26. Boccard SG et al (2014) Deep brain stimulation of the anterior cingulate cortex: targeting the affective component of chronic pain. Neuroreport 25(2):83–88

    Article  PubMed  Google Scholar 

  27. Lende RA, Kirsch WM, Druckman R (1971) Relief of facial pain after combined removal of precentral and postcentral cortex. J Neurosurg 34(4):537–543

    Article  CAS  PubMed  Google Scholar 

  28. Tsubokawa T et al (1991) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl (Wien) 52:137–139

    Article  CAS  Google Scholar 

  29. Katayama Y, Tsubokawa T, Yamamoto T (1994) Chronic motor cortex stimulation for central deafferentation pain: experience with bulbar pain secondary to Wallenberg syndrome. Stereotact Funct Neurosurg 62(1–4):295–299

    Article  CAS  PubMed  Google Scholar 

  30. Katayama Y, Fukaya C, Yamamoto T (1998) Poststroke pain control by chronic motor cortex stimulation: neurological characteristics predicting a favorable response. J Neurosurg 89(4):585–591

    Article  CAS  PubMed  Google Scholar 

  31. Herregodts P et al (1995) Cortical stimulation for central neuropathic pain: 3-D surface MRI for easy determination of the motor cortex. Acta Neurochir Suppl 64:132–135

    Article  CAS  PubMed  Google Scholar 

  32. Ebel H et al (1996) Chronic precentral stimulation in trigeminal neuropathic pain. Acta Neurochir 138(11):1300–1306

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen JP et al (2000) Treatment of central and neuropathic facial pain by chronic stimulation of the motor cortex: value of neuronavigation guidance systems for the localization of the motor cortex. Neurochirurgie 46(5):483–491

    CAS  PubMed  Google Scholar 

  34. Garcia-Larrea L et al (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83(2):259–273

    Article  CAS  PubMed  Google Scholar 

  35. Lenz FA et al (1989) Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res 496(1–2):357–360

    Article  CAS  PubMed  Google Scholar 

  36. Tasker RR et al (1987) Thalamic microelectrode recording and microstimulation in central and deafferentation pain. Appl Neurophysiol 50(1–6):414–417

    CAS  PubMed  Google Scholar 

  37. Lenz FA et al (1987) Abnormal single-unit activity recorded in the somatosensory thalamus of a quadriplegic patient with central pain. Pain 31(2):225–236

    Article  CAS  PubMed  Google Scholar 

  38. Hosobuchi Y, Adams JE, Rutkin B (1973) Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch Neurol 29(3):158–161

    Article  CAS  PubMed  Google Scholar 

  39. Mazars G, Merienne L, Cioloca C (1974) Treatment of certain types of pain with implantable thalamic stimulators. Neurochirurgie 20(2):117–124

    CAS  PubMed  Google Scholar 

  40. Mazars G, Merienne L, Ciolocca C (1973) Intermittent analgesic thalamic stimulation. Preliminary note. Rev Neurol (Paris) 128(4):273–279

    CAS  Google Scholar 

  41. Turnbull IM, Shulman R, Woodhurst WB (1980) Thalamic stimulation for neuropathic pain. J Neurosurg 52(4):486–493

    Article  CAS  PubMed  Google Scholar 

  42. Marchand S et al (2003) Analgesic and placebo effects of thalamic stimulation. Pain 105(3):481–488

    Article  PubMed  Google Scholar 

  43. Coffey RJ (2001) Deep brain stimulation for chronic pain: results of two multicenter trials and a structured review. Pain Med 2(3):183–192

    Article  CAS  PubMed  Google Scholar 

  44. Heinricher MM, Cheng ZF, Fields HL (1987) Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray. J Neurosci 7(1):271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Richardson DE, Akil H (1977) Pain reduction by electrical brain stimulation in man. Part 1: acute administration in periaqueductal and periventricular sites. J Neurosurg 47(2):178–183

    Article  CAS  PubMed  Google Scholar 

  46. Richardson DE, Akil H (1977) Pain reduction by electrical brain stimulation in man. Part 2: chronic self-administration in the periventricular gray matter. J Neurosurg 47(2):184–194

    Article  CAS  PubMed  Google Scholar 

  47. Hosobuchi Y, Adams JE, Linchitz R (1977) Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197(4299):183–186

    Article  CAS  PubMed  Google Scholar 

  48. Nandi D et al (2003) Thalamic field potentials in chronic central pain treated by periventricular gray stimulation -- a series of eight cases. Pain 101(1–2):97–107

    Article  PubMed  Google Scholar 

  49. Owen SL et al (2007) Deep brain stimulation for neuropathic pain. Acta Neurochir Suppl 97(Pt 2):111–116

    Article  CAS  PubMed  Google Scholar 

  50. Green AL et al (2004) N-of-1 trials for assessing the efficacy of deep brain stimulation in neuropathic pain. Neuromodulation 7(2):76–81

    Article  PubMed  Google Scholar 

  51. Bittar RG et al (2005) Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci 12(5):515–519

    Article  PubMed  Google Scholar 

  52. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59(12):1151–1159

    Article  CAS  PubMed  Google Scholar 

  53. Goffer Y et al (2013) Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state. J Neurosci 33(48):19034–19044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Su C et al (2015) Persistent pain alters AMPA receptor subunit levels in the nucleus accumbens. Mol Brain 8(1):46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Baliki MN et al (2010) Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66(1):149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee M et al (2015) Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci 35(13):5247–5259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mallory GW, Abulseoud O, Hwang SC, Gorman DA, Stead SM, Klassen BT, Sandroni P, Watson JC, Lee KH (2012) The nucleus accumbens as a potential target for central poststroke pain. Mayo Clin Proc 87(10):1025–1031

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weigel R, Krauss JK (2004) Center median-parafascicular complex and pain control. Review from a neurosurgical perspective. Stereotact Funct Neurosurg 82(2–3):115–126

    Article  PubMed  Google Scholar 

  59. Andy OJ (1980) Parafascicular-center median nuclei stimulation for intractable pain and dyskinesia (painful-dyskinesia). Appl Neurophysiol 43(3–5):133–144

    CAS  PubMed  Google Scholar 

  60. Krauss JK et al (2002) Deep brain stimulation of the centre median-parafascicular complex in patients with movement disorders. J Neurol Neurosurg Psychiatry 72(4):546–548

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ray CD, Burton CV (1980) Deep brain stimulation for severe, chronic pain. Acta Neurochir Suppl (Wien) 30:289–293

    Article  CAS  Google Scholar 

  62. Franzini A et al (2003) Stimulation of the posterior hypothalamus for treatment of chronic intractable cluster headaches: first reported series. Neurosurgery 52(5):1095–1099. discussion 1099-101

    PubMed  Google Scholar 

  63. Schoenen J et al (2005) Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. Brain 128.(Pt 4:940–947

    Article  CAS  PubMed  Google Scholar 

  64. Green AL et al (2006) Deep brain stimulation for neuropathic cephalalgia. Cephalalgia 26(5):561–567

    Article  CAS  PubMed  Google Scholar 

  65. Magis D, Schoenen J (2012) Advances and challenges in neurostimulation for headaches. Lancet Neurol 11(8):708–719

    Article  PubMed  Google Scholar 

  66. Fields HL, Adams JE (1974) Pain after cortical injury relieved by electrical stimulation of the internal capsule. Brain 97(1):169–178

    Article  CAS  PubMed  Google Scholar 

  67. Adams JE, Hosobuchi Y, Fields HL (1974) Stimulation of internal capsule for relief of chronic pain. J Neurosurg 41(6):740–744

    Article  CAS  PubMed  Google Scholar 

  68. Hosobuchi Y, Adams JE, Rutkin B (1975) Chronic thalamic and internal capsule stimulation for the control of central pain. Surg Neurol 4(1):91–92

    CAS  PubMed  Google Scholar 

  69. Namba S et al (1984) Electrical stimulation of the posterior limb of the internal capsule for treatment of thalamic pain. Appl Neurophysiol 47(3):137–148

    CAS  PubMed  Google Scholar 

  70. Namba S et al (1985) Sensory and motor responses to deep brain stimulation. Correlation with anatomical structures. J Neurosurg 63(2):224–234

    Article  CAS  PubMed  Google Scholar 

  71. Mano H, Seymour B (2015) Pain: a distributed brain information network? PLoS Biol 13(1):e1002037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sewards TV, Sewards MA (2002) The medial pain system: neural representations of the motivational aspect of pain. Brain Res Bull 59(3):163–180

    Article  PubMed  Google Scholar 

  73. Bushnell MC, Ceko M, Low LA (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14(7):502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Apkarian AV et al (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24(46):10410–10415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Segerdahl AR et al (2015) The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci 18(4):499–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baliki MN et al (2012) Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 15(8):1117–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lenz FA et al (2004) The role of the thalamus in pain. Suppl Clin Neurophysiol 57:50–61

    Article  PubMed  Google Scholar 

  78. Dostrovsky JO (2000) Role of thalamus in pain. Prog Brain Res 129:245–257

    Article  CAS  PubMed  Google Scholar 

  79. Yen CT, Shaw FZ (2003) Reticular thalamic responses to nociceptive inputs in anesthetized rats. Brain Res 968(2):179–191

    Article  CAS  PubMed  Google Scholar 

  80. Peschanski M, Guilbaud G, Gautron M (1981) Posterior intralaminar region in rat: neuronal responses to noxious and nonnoxious cutaneous stimuli. Exp Neurol 72(1):226–238

    Article  CAS  PubMed  Google Scholar 

  81. Kuo CC, Yen CT (2005) Comparison of anterior cingulate and primary somatosensory neuronal responses to noxious laser-heat stimuli in conscious, behaving rats. J Neurophysiol 94(3):1825–1836

    Article  PubMed  Google Scholar 

  82. Kuo CC et al (2009) Differential involvement of the anterior cingulate and primary sensorimotor cortices in sensory and affective functions of pain. J Neurophysiol 101(3):1201–1210

    Article  PubMed  Google Scholar 

  83. Zhang Y et al (2011) Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems. Mol Pain 7:64

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chudler EH et al (1990) Responses of nociceptive SI neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval. J Neurophysiol 63(3):559–569

    Article  CAS  PubMed  Google Scholar 

  85. Iwata K et al (2005) Anterior cingulate cortical neuronal activity during perception of noxious thermal stimuli in monkeys. J Neurophysiol 94(3):1980–1991

    Article  PubMed  Google Scholar 

  86. Riva-Posse P et al (2013) Practical considerations in the development and refinement of subcallosal cingulate white matter deep brain stimulation for treatment-resistant depression. World Neurosurg 80(3–4):S27.e25–S27.e34

    Article  Google Scholar 

  87. Sun FT, Morrell MJ (2014) Closed-loop neurostimulation: the clinical experience. Neurotherapeutics 11(3):553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Thakor NV (2013) Translating the brain-machine interface. Sci Transl Med 5(210):210ps17

    Article  PubMed  Google Scholar 

  89. Rauschecker JP et al (2015) Frontostriatal gating of tinnitus and chronic pain. Trends Cogn Sci 19(10):567–578

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang Q et al (2017) Chronic pain induces generalized enhancement of aversion. elife 6:e25302

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wilson HD, Uhelski ML, Fuchs PN (2008) Examining the role of the medial thalamus in modulating the affective dimension of pain. Brain Res 1229:90–99

    Article  CAS  PubMed  Google Scholar 

  92. Daou I et al (2013) Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci 33(47):18631–18640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Iyer SM et al (2014) Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol 32(3):274–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gu L et al (2015) Pain inhibition by optogenetic activation of specific anterior cingulate cortical neurons. PLoS One 10(2):e0117746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhang Z et al (2015) Role of Prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep 12(5):752–759

    Article  CAS  PubMed  Google Scholar 

  96. Iyer SM et al (2016) Optogenetic and chemogenetic strategies for sustained inhibition of pain. Sci Rep 6:30570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen Z et al (2017) Deciphering neuronal population codes for acute thermal pain. J Neural Eng 14(3):036023

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chen Z, Wang J (2016) Statistical analysis of neuronal population codes for encoding acute pain. In: Proceedings of IEEE ICASSP. IEEE Press, New York, pp 829–833

    Google Scholar 

  99. Chen Z, Hu S, Zhang Q, Wang J (2017) Quickest detection for abrupt changes in neuronal ensemble spiking activity using model-based and model-free approaches. In: Proceedings of the IEEE conference neural engineering. IEEE Press, New York, pp 481–484

    Google Scholar 

  100. Hu S, Zhang Q, Wang J, Chen Z (2017) Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity. J Neurophys 119(4):1394–1410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Chen, Z. (2019). Neuromodulation for Pain Management. In: Zheng, X. (eds) Neural Interface: Frontiers and Applications. Advances in Experimental Medicine and Biology, vol 1101. Springer, Singapore. https://doi.org/10.1007/978-981-13-2050-7_8

Download citation

Publish with us

Policies and ethics