Skip to main content

Connections Between Uniformity and Other Design Criteria

  • Chapter
  • First Online:
Theory and Application of Uniform Experimental Designs

Part of the book series: Lecture Notes in Statistics ((LNS,volume 221))

  • 1049 Accesses

Abstract

Most experimental designs, such as simple random design, random block design, Latin square design, fractional factorial design (FFD, for short), optimal design, and robust design are concerned with randomness, balance between factors and levels of each factor, orthogonality, efficiency, and robustness. From the previous chapters, we see that the uniformity has played an important role in the evaluation and construction of uniform designs. In this chapter, we shall show that uniformity is intimately connected with many other design criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Box, G.E.P., Draper, N.R.: Empirical Model-Building and Respose Surfaces. Wiley, New York (1987)

    MATH  Google Scholar 

  • Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for Experimenters, An Introduction to Design, Data Analysis, and Model Building. Wiley, New York (1978)

    MATH  Google Scholar 

  • Clark, J.B., Dean, A.M.: Equivalence of fractional factorial designs. Stat. Sin. 11, 537–547 (2001)

    MathSciNet  MATH  Google Scholar 

  • Chen, J., Lin, D.K.J.: On the identity relationship of \(2^{k-p}\) designs. J. Stat. Plan. Inference 28, 95–98 (1991)

    Article  Google Scholar 

  • Chen, J., Sun, D.X., Wu, C.F.J.: A catalogue of two-level and three-level fractional factorial designs with small runs. Int. Stat. Rev. 61, 131–145 (1993)

    Article  Google Scholar 

  • Cheng, C.S., Deng, L.W., Tang, B.: Generalized minimum aberration and design efficiency for non-regular fractional factorial designs. Stat. Sin. 12, 991–1000 (2002)

    MATH  Google Scholar 

  • Cheng, S.W., Ye, K.Q.: Geometric isomorphism and minimum aberration for factorial designs with quantitative factors. Ann. Stat. 32, 2168–2185 (2004)

    Article  MathSciNet  Google Scholar 

  • Dey, A., Mukerjee, R.: Fractional Factorial Plans. Wiley, New York (1999)

    Book  Google Scholar 

  • Draper, N.R., Mitchell, T.J.: Construction of the set of 256-run designs of resolution \(\ge 5\) and set of even 512-run designs of resolution \(\ge 6\) with special reference to the unique saturated designs. Ann. Math. Stat. 39, 246–255 (1968)

    Article  MathSciNet  Google Scholar 

  • Draper, N.R., Mitchell, T.J.: Construction of a set of 512-run designs of resolution \(\ge 5\) and a set of even 1024-run designs of resolution \(\ge 6\). Ann. Math. Stat. 41, 876–887 (1970)

    Article  MathSciNet  Google Scholar 

  • Evangelaras, H., Koukouvinos, C., Lappas, E.: 18-run nonisomorphic three level orthogonal arrays. Metrika 66, 31–37 (2007)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Ma, C.X.: The usefulness of uniformity in experimental design. In: Kollo, T., Tiit, E.-M., Srivastava, M. (eds.) New Trends in Probability and Statistics, pp. 51–59. De Gruyter, The Netherlands (2000)

    Google Scholar 

  • Fang, K.T., Ma, C.X.: Relationship between uniformity, aberration and correlation in regular fractions \(3^{s-1}\). In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 213–231. Springer, Berlin (2002)

    Chapter  Google Scholar 

  • Fang, K.T., Mukerjee, R.: A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika 87, 1993–198 (2000)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Qin, H.: Uniformity pattern and related criteria for two-level factorials. Sci. China Ser. A. 47, 1–12 (2004)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Winker, P.: Uniformity and orthogonality. Technical Report MATH-175, Hong Kong Baptist University (1998)

    Google Scholar 

  • Fang, K.T., Zhang, A.: Minimum aberration majorization in non-isomorphic saturated designs. J. Stat. Plan. Inference 126, 337–346 (2004)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Lin, D.K.J., Winker, P., Zhang, Y.: Uniform design: theory and applications. Technometrics 42, 237–248 (2000)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Ma, C.X., Mukerjee, R.: Uniformity in fractional factorials. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 232–241. Springer, Berlin (2002)

    Chapter  Google Scholar 

  • Fang, K.T., Lin, D.K.J., Liu, M.Q.: Optimal mixed-level supersaturated design. Metrika 58, 279–291 (2003)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Lu, X., Winker, P.: Lower bounds for centered and wrap-around \(L_2\)-discrepancies and construction of uniform. J. Complex. 20, 268–272 (2003)

    Google Scholar 

  • Fang, K.T., Ge, G.N.: An efficient algorithm for the classification of hadamard matrices. Math. Comput. 73, 843–851 (2004)

    Article  Google Scholar 

  • Fang, K.T., Ke, X. Elsawah, A.M.: Construction of a new 27-run uniform orthogonal design. J. Complex. (2016). (submitted)

    Google Scholar 

  • Fries, A., Hunter, W.G.: Minimum aberration \(2^{k-p}\) designs. Technometrics 22, 601–608 (1980)

    MathSciNet  MATH  Google Scholar 

  • Hall, J.M.: Hadamard matrix of order 16. Jet Propulsion Laboratory Res Summery 1, 21–26 (1961)

    Google Scholar 

  • Hickernell, F.J., Liu, M.Q.: Uniform designs limit aliasing. Biometrika 89, 893–904 (2002)

    Article  MathSciNet  Google Scholar 

  • Liu, M.Q.: Using discrepancy to evaluate fractional factorial designs. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 357–368. Springer, Berlin (2002)

    Chapter  Google Scholar 

  • Lin, D.K.J., Draper, N.R.: Projection properties of plackett and burman designs. Technometrics 34, 423–428 (1992)

    Google Scholar 

  • Lin, D., Draper, N.R.: Screening properties of certain two-level designs. Metrika 42, 99–118 (1995)

    Article  Google Scholar 

  • Liu, M.Q., Fang, K.T., Hickernell, F.J.: Connections among different criteria for asymmetrical fractional factorial designs. Stat. Sin. 16, 1285–1297 (2006)

    MathSciNet  MATH  Google Scholar 

  • Li, P.F., Liu, M.Q., Zhang, R.C.: Some theory and the construction of mixed-level supersaturated designs. Stat. Probab. Lett. 69, 105–116 (2004)

    Article  MathSciNet  Google Scholar 

  • Ma, C.X., Fang, K.T.: A note on generalized aberration in factorial designs. Metrika 53, 85–93 (2001)

    Article  MathSciNet  Google Scholar 

  • Ma, C.X., Fang, K.T., Lin, D.K.J.: On isomorphism of factorial designs. J. Complex. 17, 86–97 (2001)

    Article  MathSciNet  Google Scholar 

  • Ma, C.X., Fang, K.T., Lin, D.K.J.: A note on uniformity and orthogonality. J. Stat. Plan. Inference 113, 323–334 (2003)

    Article  MathSciNet  Google Scholar 

  • Mukerjee, R., Wu, C.F.J.: On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann. Stat. 23, 2102–2115 (1995)

    Article  MathSciNet  Google Scholar 

  • Qin, H., Fang, K.T.: Discrete discrepancy in factorial designs. Metrika 60, 59–72H (2004)

    Article  MathSciNet  Google Scholar 

  • Qin, H., Zou, N., Zhang, S.L.: Design efficiency for minimum projection uniform designs with two-level. J. Syst. Sci. Complex. 24, 761–768 (2011)

    Article  MathSciNet  Google Scholar 

  • Qin, H., Wang, Z.H., Chatterjee, K.: Uniformity pattern and related criteria for \(q\)-level factorials. J. Stat. Plan. Inference 142, 1170–1177 (2012)

    Article  MathSciNet  Google Scholar 

  • Roman, S.: Coding and Information Theory. Wiley, New York (1992)

    MATH  Google Scholar 

  • Sun, F.S., Liu, M.Q., Hao, W.R.: An algorithmic approach to finding factorial designs with generalized minimum aberration. J. Complex. 25, 75–84 (2009)

    Article  MathSciNet  Google Scholar 

  • Sun, F.S., Chen, J., Liu, M.Q.: Connections between uniformity and aberration in general multi-level factorials. Metrika 73, 305–315 (2011)

    Article  MathSciNet  Google Scholar 

  • Sun, D.X., Wu, C.F.J.: Statistical properties of hadamard matrices of order 16. In: Quality Through Engineering Design (1993)

    Google Scholar 

  • Tang, B.: Theory of J-characteristics for fractional factorial designs and projection justification of minimum \(G_2\)-aberration. Biometrika 88, 401–407 (2001)

    Article  MathSciNet  Google Scholar 

  • Tang, Y.: Combinatorial properties of uniform designs and their applications in the constructions of low-discrepancy designs. Ph.D. thesis, Hong Kong Baptist University (2005)

    Google Scholar 

  • Tang, B., Deng, L.Y.: Minimum \(G_2\)-aberration for nonregular fractional designs. Ann. Stat. 27, 1914–1926 (1999)

    Article  Google Scholar 

  • Tang, Y., Xu, H.: An effective construction method for multilevel uniform designs. J. Stat. Plan. Inference 143, 1583–1589 (2013)

    Article  Google Scholar 

  • Tang, Y., Xu, H., Lin, D.K.J.: Uniform fractional factorial designs. Ann. Stat. 40, 891–907 (2012)

    Article  MathSciNet  Google Scholar 

  • Xu, H.: Minimum moment aberration for nonregular designs and supersaturated designs. Stat. Sin. 13, 691–708 (2003)

    MathSciNet  MATH  Google Scholar 

  • Xu, H.Q., Wu, C.F.J.: Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Stat. 29, 1066–1077 (2001)

    Article  MathSciNet  Google Scholar 

  • Ye, K.Q.: Indicator function and its application in two-level factorial design. Ann. Stat. 31, 984–994 (2003)

    Article  MathSciNet  Google Scholar 

  • Zhang, A., Fang, K.T., Li, R., Sudjianto, A.: Majorization framework for balanced lattice designs. Ann. Stat. 33, 2837–2853 (2005)

    Article  MathSciNet  Google Scholar 

  • Zhang, S.L., Qin, H.: Minimum projection uniformity criterion and its application. Stat. Probab. Lett. 76, 634–640 (2006)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.D., Xu, H.: Space-filling fractional factorial designs. J. Am. Stat. Assoc. 109, 1134–1144 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.D., Ning, J.H., Song, X.B.: Lee discrepancy and its applications in experimental designs. Stat. Probab. Lett. 78, 1933–1942 (2008)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.D., Fang, K.T., Ning, J.H.: Mixture discrepancy for quasi-random point sets. J. Complex. 29, 283–301 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Tai Fang .

Exercises

Exercises

6.1

Prove that the following two designs, \(D_1\) and \(D_2\), are isomorphic

$$ D_1= \left[ \begin{array}{rrr} 1 &{}\quad 1 &{}\quad 1 \\ 1 &{}\quad -1 &{}\quad 1\\ 1 &{}\quad 1 &{}\quad -1\\ -1 &{}\quad -1 &{}\quad -1\\ -1 &{}\quad 1 &{}\quad -1\\ -1 &{}\quad -1 &{}\quad 1 \end{array} \right] \, D_2= \left[ \begin{array}{rrr} -1 &{}\quad -1 &{}\quad -1 \\ 1 &{}\quad -1 &{}\quad -1\\ -1 &{}\quad 1 &{}\quad -1\\ 1 &{}\quad 1 &{}\quad 1\\ -1 &{}\quad 1 &{}\quad 1\\ 1 &{}\quad -1 &{}\quad 1 \end{array} \right] . $$

Indicate that these designs belong to:

(i) U-type design; (ii) orthogonal design; (iii) fractional factorial design.

6.2

Denote by \(\mathcal {U}_9(3^4)\) all the possible orthogonal designs \(L_9(3^4)\) with levels 1, 2 and 3. Answer the following questions:

(1) Show that all these designs in \(\mathcal {U}_9(3^4)\) form only one isomorphic group.

(2) Calculate WD, CD and MD for all designs in \(\mathcal {U}_9(3^4)\). Give your conclusion.

(3) Table 6.4 list two designs \(L_9(3^4)\), where \(\varvec{U}_2\) was obtained by minimizing CD on \(\mathcal {U}_9(3^4)\). The \(\varvec{U}_2\) is called uniformly orthogonal design under CD. Find uniformly orthogonal design under MD/WD.

(4) Calculate the discrete discrepancy for all designs in \(\mathcal {U}_9(3^4)\). Give your conclusion.

(5) Give a discussion on two concepts: the uniformly orthogonal design and uniform minimum aberration design.

(6) Calculate the projection discrepancy pattern defined in Definition 6.5.1.

6.3

Calculate the uniform pattern (refer to Definition 6.5.2) for all subdesigns \(L_8(2^5)\) of \(L_8(2^7)\) in Table 1.3.2.

6.4

Table 6.5 gives a uniform minimum aberration design \(UL_{27}(3^{13})\) under MD. This design involves several uniform minimum aberration subdesigns \(UL_{27}(3^{s})\) for \(s<13\) under MD. Give two such subdesigns for \(s=6\) and \(s=10\) with detailed calculation, respectively.

6.5

There are five non-isomorphic \(L_{16}(2^{15})\) designs. This chapter lists two of them. Give other three from the literature.

6.6

There are two non-isomorphic \(L_{27}(3^{13})\) designs (refer to Fang and Zhang 2004). Apply Algorithm 6.1.2 to detect their non-isomorphism.

6.7

Table 6.2 list four orthogonal designs \(L_{18}(3^7)\). Ma and Fang (2001) pointed out that there are at least three non-isomorphic \(L_{18}(3^{7})\) designs. Furthermore, Evangelaras et al. (2007) confirmed that there exist exactly three non-isomorphic three-level orthogonal arrays with 18 runs and 7 columns. They obtained several minimum aberration subdesigns \(L_{18}(3^s), s\leqslant 7.\) List these minimum aberration subdesigns as many as possible.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, KT., Liu, MQ., Qin, H., Zhou, YD. (2018). Connections Between Uniformity and Other Design Criteria. In: Theory and Application of Uniform Experimental Designs. Lecture Notes in Statistics, vol 221. Springer, Singapore. https://doi.org/10.1007/978-981-13-2041-5_6

Download citation

Publish with us

Policies and ethics