Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 221))

  • 1050 Accesses

Abstract

Let \(y=f(\varvec{x})=f(x_1,\ldots ,x_s)\) be the true model of a system where \(X_1,\ldots ,X_s\) are factors that take values \((x_1,\ldots ,x_s)\) on a domain \(\mathcal {X}\), and y is response. For physical experiments with model unknown, the true model \(f(\cdot )\) is unknown and for computer experiments the function \(f(\cdot )\) is known, but it may have no an analytic formula. We are requested to find a metamodel \(\hat{y}=g(\varvec{x})\) with a high quality to approximate the true model in a certain sense. How to find a metamodel is a challenge problem. This chapter gives a brief introduction to various modeling techniques such as radial basis function, polynomial regression model, spline and Fourier model, wavelets basis and Kriging models in applications by the use of uniform designs. Readers can find more discussion on modeling methods in Eubank (1988), Wahba (1990), Hastie et al. (2001), and Fang et al. (2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoniadis, A., Oppenheim, G.: Wavelets and Statistics. Springer, New York (1995)

    Book  Google Scholar 

  • Brown, L.D., Cai, T.: Wavelet regression for random uniform design, Technical report, no. 97-15, Department of Statistics, Purdue University (1997)

    Google Scholar 

  • Cai, T., Brown, L.D.: Wavelet shrinkage for nonequispaced samples. Ann. Stat. 26, 425–455 (1998)

    MathSciNet  MATH  Google Scholar 

  • Chen, V.C.P., Tsui, K.L., Barton, R.R., Meckesheimer, M.: A review on design, modeling and applications of computer experiments. IIE Trans. 38, 273–291 (2006)

    Article  Google Scholar 

  • Chui, C.K.: Wavelets: A Tutorial in Theory and Applications. Academic, Boston (1992)

    MATH  Google Scholar 

  • Cressie, N.: Spatial prediction and ordinary kriging. Math. Geol. 20, 405–421 (1997)

    Article  MathSciNet  Google Scholar 

  • Cressie, N.A.: Statistics for Spatial Data. Wiley, New York (1993)

    Book  Google Scholar 

  • Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  • De Boor, C., Bon, A.: On multivariate polynomial interpolation. Constr. Approx. 6, 287–302 (1990)

    Article  MathSciNet  Google Scholar 

  • Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  Google Scholar 

  • Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Pieard, D.: Wavelet shrinkage: asymptopia? J. R. Stat. Soc. Ser. B 57, 301–369 (1995)

    MathSciNet  MATH  Google Scholar 

  • Dyn, N., Levin, D., Rippa, S.: Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM J. Sci. Stat. Comput. 7, 639–659 (1986)

    Article  Google Scholar 

  • Eubank, R.L.: Spline Smoothing and Nonparametric Regression. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  • Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Wang, Y.: Number-Theoretic Methods in Statistics. Chapman and Hall, London (1994)

    Book  Google Scholar 

  • Fang, K.T., Kotz, S., Ng, K.: Symmetric Multivariate and Related Distributions. Chapman and Hall, London (1990)

    Book  Google Scholar 

  • Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman and Hall/CRC, New York (2006)

    MATH  Google Scholar 

  • Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–141 (1991)

    Article  MathSciNet  Google Scholar 

  • Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University Press, New York (1997)

    Google Scholar 

  • Hardy, R.L.: Multiquadratic equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learninig, Data Mining, Inference, and Prediction. Springer, New York (2001)

    MATH  Google Scholar 

  • Krige, D.G.: A statistical approach to some mine valuations and allied problems at the witwatersrand, Master’s thesis, University of Witwatersrand (1951)

    Google Scholar 

  • Li, R.: Model selection for analysis of uniform design and computer experiment. Int. J. Reliab. Qual. Saf. Eng. 9, 305–315 (2002)

    Article  Google Scholar 

  • Matheron, G.: The theory of regionalized variables and its applications, mathematiques de fontainebleau, 5th edn. Les Cahiers du Centre de Morphologie, Fontainebleau (1971)

    Google Scholar 

  • Miller, D., Frenklach, M.: Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics. Int. J. Chem. Kinet. 15, 677–696 (1983)

    Article  Google Scholar 

  • Myers, R.H.: Classical and Modern Regression with Applications, 2nd edn. Duxbury Press, Belmont (1990)

    Google Scholar 

  • Powell, M.J.D.: Radial basis functions for multivariable interpolation: a review. In: Mason, J., Cox, M. (eds.) Algorithms for Approximation, pp. 143–167. Oxford University Press, London (1987)

    Google Scholar 

  • Riccomango, E., Schwabe, R., Wynn, H.P.: Lattice-based \(D\)-optimal design for Fourier regression. Ann. Statist. 25, 2313–2317 (1997)

    Article  MathSciNet  Google Scholar 

  • Sacks, J., Schiller, S.B., Welch, W.J.: Designs for computer experiments. Technometrics 31, 41–47 (1989a)

    Article  MathSciNet  Google Scholar 

  • Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments (with discussion). Stat. Sin. 4, 409–435 (1989b)

    MATH  Google Scholar 

  • Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Book  Google Scholar 

  • Shi, P., Fang, K.T., Tsai, C.L.: Optimal multi-criteria designs for fourier regression model. J. Stat. Plan. Inference 96, 387–401 (2001)

    Article  MathSciNet  Google Scholar 

  • Stein, M.L.: Interpolation of Spatial Data. Some Theory for Kriging. Springer, New York (1999)

    Book  Google Scholar 

  • Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  • Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting and computer experiments. Technometrics 34, 15–25 (1992)

    Article  Google Scholar 

  • Xie, M.Y., Ning, J.H., Fang, K.T.: Orthogonality and \(D\)-optimality of the U-type design under general Fourier regression models. Stat. Probab. Lett. 77, 1377–1384 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Tai Fang .

Exercises

Exercises

5.1

Suppose the response y and factor x have the following underlying relationship

$$\begin{aligned} y=f(x)+\varvec{e}=1-e^{-x^2}+\varepsilon ,~~\varepsilon \sim N(0,0.1^2), x\in [0, 3], \end{aligned}$$

but the experimenter does not know this model and he/she wants to find an approximation model to the real one by experiments. Therefore, he/she considers four designs as follows:

$$\begin{aligned} D_3= & {} \{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,2\},\\ D_4= & {} \left\{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{5}{4}, \frac{5}{4}, \frac{5}{4}, \frac{7}{4}, \frac{7}{4}, \frac{7}{4},\right\} ,\\ D_6= & {} \left\{ \frac{1}{6}, \frac{1}{6}, \frac{3}{6}, \frac{3}{6}, \frac{5}{6}, \frac{5}{6}, \frac{7}{6},\frac{7}{6},\frac{9}{6},\frac{9}{6},\frac{11}{6},\frac{11}{6}\right\} ,\\ D_{12}= & {} \left\{ \frac{1}{12}, \frac{3}{12}, \frac{5}{12}, \frac{7}{12}, \frac{9}{12}, \frac{11}{12}, \frac{13}{12},\frac{15}{12},\frac{17}{12},\frac{19}{12},\frac{21}{12},\frac{23}{12}\right\} . \end{aligned}$$

Implement the following steps:

  1. 1.

    Plot the function

    $$ y=f(x)=1-e^{-x^2},~~ x\in [0,3]. $$
  2. 2.

    Generate a data set for each design by the statistical simulation.

  3. 3.

    Find a suitable regression model and related ANOVA table for each data set. Plot the fitting models.

  4. 4.

    Randomly generate \(N=1000\) points \(x_1, \ldots , x_{1000}\) and calculate the mean square error (MSE) defined by

    $$ \text{ MSE }=\frac{1}{N}\sum _{i=1}^N (y_i-\hat{y}_i)^2 $$

    for each model, where \(\hat{y}_i\) is the estimated value of \(y_i\) under the model.

  5. 5.

    According to the plots, MSE and \(SS_E\), give your conclusions based on your comparisons among the above models.

5.2

For comparing different kinds of designs and modeling techniques in computer experiments, there is a popular way to consider several case studies. The models are known. Choose several designs like the orthogonal design (OD), Latin hypercube sampling (LHS), uniform design (UD), and modeling techniques. Then compare all design-modeling combinations.

Suppose that the following models are given. Please consider three kinds of designs OD, UD, and LHS (with \(n=16,25,29,64\)) and modeling techniques: the quadratic regression models, a power spline basis with the following general form of \(1,x,x^2,\ldots , x^p, (x-\kappa _1)_+^p,\ldots , (x-\kappa _m)_+^p\) in (5.1.8), a Kriging model \(y(\varvec{x})= \sum _{i=1}^m \beta _ih_i(\varvec{x}) +z(\varvec{x})\) defined in Definition 5.2.2 and artificial neural network. Give your comparisons for all possible design-modeling combinations.

Model 1:

$$\begin{aligned} Y=\frac{{\ln }(x_{1})\times (\sin (x_{2})+4)}{e^{x_{3}}}+{\ln }(x_{1})e^{x_{3}} \end{aligned}$$
(5.3.5)

where the ranges of the independent variables are \( x_{1}:[0.1, 10],\) \( x_{2}:[-\pi /2, \pi /2],\) and \(x_{3}:[0, 1]\), respectively.

Model 2:

$$\begin{aligned} Y= & {} -\left[ 2\exp \left\{ -\frac{1}{2}(x_{1}^{2}+(x_{2}-4))^{2}\right\} \right. \nonumber \\&\left. +\exp \left\{ -\frac{1}{2}((x_{1}-4)^{2}+\frac{x_{2}^{2}}{4}\right\} +\exp \left\{ -\frac{1}{2}\left( \frac{(x_{1}+4)^2}{4}+x_{2}^{2}\right) \right\} \right] \end{aligned}$$
(5.3.6)

where the ranges of the independent variables are \( x_{1}:[-10, 7],\) \( x_{2}:[-6, 7],\) respectively.

Model 3:

$$\begin{aligned} Y= & {} 10(x_{2}-x_{1}^{2})^{2}+(1-x_{1})^{2}+9(x_{4}-x_{3}^{2})+(1-x_{3})^{2}\nonumber \\&+1.01[(x_{2}-1)^{2}+(x_{4}-1)^{2}] +1.98(x_{2}-1)(x_{4}-1)^{2} \end{aligned}$$
(5.3.7)

where the ranges of the independent variables are \( x_{i}:[-2, 2],i=1,2,3,4 \).

Model 4:

$$\begin{aligned} Y=\sum _{k=1}^{4}[100(x_{k+1}-x_{k}^{2})^{2}+(1-x_{k})^{2}], \end{aligned}$$
(5.3.8)

where the ranges of the independent variables are \( x_{i}:[-2, 2],i=1,\ldots ,5 \).

5.3

Example 1.1.7 is a good platform for comparing various design-modeling combinations. Let y be the distance from the end of the arm to the origin expressed as a function of 2m variables \(\theta _j\in [0,2\pi ]\) and \(L_j\in [0,1]\), where \(y=\sqrt{u^2+v^2}\) and (uv) are defined in (1.1.3). Consider three kinds of designs OD, UD, and LHS and three kinds of metamodel: polynomial regression model, Kriging model, and empirical Kriging model. Give your comparisons for possible design-modeling combinations with \(m=2\) and \(m=3\), respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, KT., Liu, MQ., Qin, H., Zhou, YD. (2018). Modeling Techniques. In: Theory and Application of Uniform Experimental Designs. Lecture Notes in Statistics, vol 221. Springer, Singapore. https://doi.org/10.1007/978-981-13-2041-5_5

Download citation

Publish with us

Policies and ethics