Skip to main content

Construction of Uniform Designs—Deterministic Methods

  • Chapter
  • First Online:
Theory and Application of Uniform Experimental Designs

Part of the book series: Lecture Notes in Statistics ((LNS,volume 221))

Abstract

In this chapter and the following chapters, the different construction methods for uniform design tables are given. Typically, there are three approaches of constructing uniform design tables: (i) quasi-Monte Carlo methods; (ii) combinatorial methods; (iii) numerical search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beth, T., Jungnickel, D., Lenz, H.: Design theory. Volume II. Encyclopedia of Mathematics and Its Applications, vol. 78. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • CaliĹ„ski, T., Kageyama, S.: Block Designs: A Randomization Approach. Volume I. Lecture Notes in Statistics, vol. 150. Springer, New York (2000)

    Book  Google Scholar 

  • Cheng, C.S.: E(\(s^2\))-optimal supersaturated designs. Stat. Sin. 7, 929–939 (1997)

    Google Scholar 

  • Colbourn, C.J., Dinita, J.H.: CRC Handbook of Combinatorial Designs. CRC Press, New York (1996)

    Book  Google Scholar 

  • Colbourn, C.J., Dinitz, J.H., Stinson, D.R.: Applications of combinatorial designs to communications, cryptography, and networking. Surveys in Combinatorics (Canterbury). London Mathematical Society Lecture Note Series, vol. 267, pp. 37–100. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Fang, K.T.: The uniform design: application of number-theoretic methods in experimental design. Acta Math. Appl. Sin. 3, 363–372 (1980)

    Google Scholar 

  • Fang, K.T., Hickernell, F.J.: The uniform design and its applications. Bulletin of the International Statistical Institute, vol. 1 (50th Session), pp. 339–349. Beijing (1995)

    Google Scholar 

  • Fang, K.T., Li, J.K.: Some new results on uniform design. Chin. Sci. Bull. 40, 268–272 (1995)

    MATH  Google Scholar 

  • Fang, K.T., Ma, C.X.: Wrap-around \({L}_2\)-discrepancy of random sampling, Latin hypercube and uniform designs. J. Complex. 17, 608–624 (2001a)

    Google Scholar 

  • Fang, K.T., Ma, C.X.: Orthogonal and Uniform Experimental Designs. Science Press, Beijing (2001b)

    Google Scholar 

  • Fang, K.T., Wang, Y.: A note on uniform distribution and experiment design. Chin. Sci. Bull. 26, 485–489 (1981)

    MATH  Google Scholar 

  • Fang, K.T., Wang, Y.: Number-Theoretic Methods in Statistics. Chapman and Hall, London (1994)

    Book  Google Scholar 

  • Fang, K.T., Lin, D.K.J., Ma, C.X.: On the construction of multi-level supersaturated designs. J. Stat. Plan. Inference 86, 239–252 (2000)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Ge, G.N., Liu, M.Q., Qin, H.: Optimal supersaturated designs and their constructions, Technical report MATH-309, Hong Kong Baptist University (2001)

    Google Scholar 

  • Fang, K.T., Ge, G.N., Liu, M.Q.: Construction of \({E(f_{_{NOD}})}\)-optimal supersaturated designs via room squares. In: Chaudhuri, A., Ghosh, M. (eds.) Calcutta Statistical Association Bulletin, vol. 52, pp. 71–84 (2002a)

    Google Scholar 

  • Fang, K.T., Ge, G.N., Liu, M.Q.: Uniform supersaturated design and its construction. Sci. China Ser. A 45, 1080–1088 (2002b)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Ma, C.X., Winker, P.: Centered \({L}_2\)-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs. Math. Comput. 71, 275–296 (2002c)

    Google Scholar 

  • Fang, K.T., Ge, G.N., Liu, M.Q., Qin, H.: Construction on minimum generalized aberration designs. Metrika 57, 37–50 (2003a)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Lin, D.K.J., Liu, M.Q.: Optimal mixed-level supersaturated design. Metrika 58, 279–291 (2003b)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Ge, G.N., Liu, M.Q., Qin, H.: Combinatorial constructions for optimal supersaturated designs. Discret. Math. 279, 191–202 (2004a)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Ge, G.N., Liu, M.Q., Qin, H.: Construction of uniform designs via super-simple resolvable t-designs. Util. Math. 66, 15–32 (2004b)

    Google Scholar 

  • Fang, K.T., Ge, G.N., Liu, M.Q.: Construction of optimal supersaturated designs by the packing method. Sci. China Ser. A 47, 128–143 (2004c)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Lu, X., Tang, Y., Yin, J.: Constructions of uniform designs by using resolvable packings and coverings. Discret. Math. 274, 25–40 (2004d)

    Article  MathSciNet  Google Scholar 

  • Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman and Hall/CRC, New York (2006a)

    Book  Google Scholar 

  • Fang, K.T., Tang, Y., Yin, J.X.: Resolvable partially pairwise balanced designs and their applications in computer experiments. Util. Math. 70, 141–157 (2006b)

    Google Scholar 

  • Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999)

    Book  Google Scholar 

  • Hua, L.K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer and Science Press, Berlin and Beijing (1981)

    MATH  Google Scholar 

  • Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maxmin distance desis. J. Stat. Plan. Inference 26, 131–148 (1990)

    Article  Google Scholar 

  • Korobov, N.M.: The approximate computation of multiple integrals. Dokl. Akad. Nauk. SSSR 124, 1207–1210 (1959)

    MathSciNet  MATH  Google Scholar 

  • Li, P.F., Liu, M.Q., Zhang, R.C.: Some theory and the construction of mixed-level supersaturated designs. Stat. Probab. Lett. 69, 105–116 (2004)

    Article  MathSciNet  Google Scholar 

  • Lin, D.K.J.: A new class of supersaturated designs. Technometrics 35, 28–31 (1993)

    Article  Google Scholar 

  • Liu, M.Q., Fang, K.T.: Some results on resolvable incomplete block designs. Sci. China Ser. A 48, 503–512 (2005)

    Article  MathSciNet  Google Scholar 

  • Liu, M.Q., Zhang, R.C.: Construction of \(E(s^2)\) optimal supersaturated designs. J. Stat. Plan. Inference 86, 229–238 (2000)

    Google Scholar 

  • Liu, M.Q., Fang, K.T., Hickernell, F.J.: Connections among different criteria for asymmetrical fractional factorial designs. Stat. Sin. 16, 1285–1297 (2006)

    MathSciNet  MATH  Google Scholar 

  • Ma, C.X., Fang, K.T.: A new approach to construction of nearly uniform designs. Int. J. Mater. Prod. Technol. 20, 115–126 (2004)

    Article  Google Scholar 

  • Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic, New York (1979)

    MATH  Google Scholar 

  • Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 243–255 (1991)

    Article  Google Scholar 

  • Mukerjee, R., Wu, C.F.J.: On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann. Stat. 23, 2102–2115 (1995)

    Article  MathSciNet  Google Scholar 

  • Nguyen, N.K.: An algorithmic approach to constructing supersaturated designs. Technometrics 38, 69–73 (1996)

    Article  Google Scholar 

  • Sacks, J., Schiller, S.B., Welch, W.J.: Designs for computer experiments. Technometrics 31, 41–47 (1989)

    Article  MathSciNet  Google Scholar 

  • Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Book  Google Scholar 

  • Shaw, J.E.H.: A quasirandom approach to integration in Bayesian statistics. Ann. Stat. 16, 859–914 (1988)

    Article  MathSciNet  Google Scholar 

  • Stinson, D.R.: A survey of Kirkman triple systems and related designs. Discret. Math. 92(1–3), 371–393 (1991)

    Article  MathSciNet  Google Scholar 

  • Stinson, D.R.: Packings. In: Colbourn, C.J., Dinitz, J.H. (eds.) CRC Press Series on Discrete Mathematics and Its Applications, pp. 409–413. CRC Press, Boca Raton (1996)

    Google Scholar 

  • Tang, Y., Xu, H., Lin, D.K.J.: Uniform fractional factorial designs. Ann. Stat. 40, 891–907 (2012)

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Fang, K.T.: A note on uniform distribution and experimental design. Chin. Sci. Bull. 26, 485–489 (1981)

    MathSciNet  MATH  Google Scholar 

  • Yamada, S., Ikebe, Y.T., Hashiguchi, H., Niki, N.: Construction of three-level supersaturated design. J. Stat. Plan. Inference 81, 183–193 (1999)

    Article  MathSciNet  Google Scholar 

  • Yuan, R., Lin, D.K.J., Liu, M.Q.: Nearly column-orthogonal designs based on leave-one-out good lattice point sets. J. Stat. Plan. Inference 185, 29–40 (2017)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.D., Xu, H.: Space-filling fractional factorial designs. J. Am. Stat. Assoc. 109, 1134–1144 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.D., Xu, H.: Space-filling properties of good lattice point sets. Biometrika 102, 959–966 (2015)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.D., Fang, K.T., Ning, J.H.: Mixture discrepancy for quasi-random point sets. J. Complex. 29, 283–301 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Tai Fang .

Exercises

Exercises

3.1

For the case of \(n=8,s=2\), give the design space \(\mathcal {D}(8;C^2), \mathcal {D}(8;, 8^2), \mathcal {U}(8; 8^2)\) and \(\mathcal {U}(8; 2\times 4)\).

3.2

Transfer the design \({\varvec{U}}\) in Example 3.1.2 into \({\varvec{X}}_{lft}, {\varvec{X}}_{ctr}, {\varvec{X}}_{ext}\) and \({\varvec{X}}_{mis}\) in \(C^4\), respectively. Calculate WD, CD, and MD for these four designs in \(C^4\). Are these four designs equivalent?

3.3

Give necessary conditions for a uniform design table \(U_n(n^s)\).

3.4

By the use of the Fibonacci sequence introduced in Sect. 3.3.1, construct \(U(n;n^2)\) for \(n=5, 8, 13\) and compare their CD-values with designs in Tables 3.1 and 3.2.

3.5

Suppose an experiment has three factors, temperature, pressure, and reaction time, and the ranges are [50, 100] \(^{\circ }\)C, [3, 5] atm and [10, 25] min, respectively. Then, the experimental domain \(\mathcal {X}=[50,80]\times [3,6]\times [10,25]\). Suppose each factor has four levels. Two possible choices of design matrices \({\varvec{Z}}_1\) and \({\varvec{Z}}_2\) and their mapping to \([0,1]^2\) are as follows:

$$\begin{aligned}&{\varvec{Z}}_1=\begin{pmatrix} 60 &{} 6 &{} 25 \\ 70 &{} 6 &{} 15 \\ 60 &{} 3 &{} 15 \\ 80 &{} 5 &{} 20 \\ 50 &{} 5 &{} 10 \\ 70 &{} 3 &{} 25 \\ 80 &{} 4 &{} 10 \\ 50 &{} 4 &{} 20 \end{pmatrix} \Rightarrow {\varvec{X}}_1=\begin{pmatrix} 0.3333 &{} 1 &{} 1 \\ 0.6667 &{} 1 &{} 0.3333 \\ 0.3333 &{} 0 &{} 0.3333 \\ 1 &{} 0.6667 &{} 0.6667 \\ 0 &{} 0.6667 &{} 0 \\ 0.6667 &{} 0 &{} 1 \\ 1 &{} 0.3333 &{} 0 \\ 0 &{} 0.3333 &{} 0.6667 \\ \end{pmatrix},\\&{\varvec{Z}}_2=\begin{pmatrix} 61.25 &{} 5.625 &{} 23.125 \\ 68.75 &{} 5.625 &{} 15.625 \\ 61.25 &{} 3.375 &{} 15.625 \\ 76.25 &{} 4.875 &{} 19.375 \\ 53.75 &{} 4.875 &{} 11.875 \\ 68.75 &{} 3.375 &{} 23.125 \\ 76.25 &{} 4.125 &{} 11.875 \\ 53.75 &{} 4.125 &{} 19.375 \end{pmatrix} \Rightarrow {\varvec{X}}_2=\begin{pmatrix} 0.375 &{} 0.875 &{} 0.875\\ 0.625 &{} 0.875 &{} 0.375\\ 0.375 &{} 0.125 &{} 0.375\\ 0.875 &{} 0.625 &{} 0.625\\ 0.125 &{} 0.625 &{} 0.125\\ 0.625 &{} 0.125 &{} 0.875\\ 0.875 &{} 0.375 &{} 0.125\\ 0.125 &{} 0.375 &{} 0.625 \end{pmatrix}. \end{aligned}$$

Answer the following questions:

(1) Compare designs \({\varvec{Z}}_1\) and \({\varvec{Z}}_2\) and give your comments.

(2) For obtaining \({\varvec{X}}_1\) and \({\varvec{X}}_2\), one mapping includes 0 and 1, but another does not involve 0 and 1. Find the formulae that use for the two mappings.

3.6

Find the Euler function \(\phi (n)\) for \(n=8,9,10,14,15\) and the corresponding generating vectors \(\mathcal {H}_n\).

3.7

Give three cases satisfying \(\phi (n)>\phi (n+1).\) In these cases, the leave-one-out glpm is not worth to be recommended.

3.8

Give the cardinality of \(\mathcal {G}_{8,2}\). Under the discrepancy MD, put designs of \(\mathcal {G}_{8,2}\) into groups such that designs in the same group are equivalent and designs in different group have different MD-values.

3.9

For given (n, s), find the cardinality of \(\mathcal {A}_{n,s}\) for \(n=11, s=2,3,4,5;\) and \(n=30\), \(s=2,3,4,5\), where

$$\begin{aligned} \mathcal {A}_{n,s}= & {} \{a: a<n,\ \gcd (a^j,n)=1,\ j=1, \ldots , s-1; 1, a, a^2, \ldots , a^{s-1}(\widetilde{\text{ mod }}~n)\\ ~&\text{ are } \text{ distinct } \text{ each } \text{ other }\}. \end{aligned}$$

3.10

By use of the design \(U_{47}(47^3)\), construct a nearly uniform design \(U_8(8^3)\) under MD by the cutting method.

3.11

Let \(n=47\) and \(s=46\). Find the \(L_1\)-distance and MD of the corresponding glp set U. Moreover, consider the simple linear level permutations \(U + i\) \((\widetilde{\text{ mod }}~ n)\) and give your conclusion.

3.12

A Latin square of order n is an \(n\times n\) matrix filled with n different symbols, each symbol in each row/column appears once and only once.

(1) Give a Latin square for order 3 and order 4.

(2) Find the definition for the concept of orthogonal Latin squares.

(3) Find the way to use orthogonal Latin squares to the construction of an orthogonal designs \(L_{n^2}(n^{n-1})\).

(4) Sudoku puzzle such that the final \(9\times 9\) matrix to be a Latin square. Fill the following Sudoku puzzle:

9

 

4

2

  

8

3

 
 

5

7

4

 

9

   

6

2

  

7

1

 

9

5

8

9

2

7

3

  

1

4

1

  

6

 

4

9

  

4

7

   

8

 

5

 

5

   

4

 

3

8

2

 

8

 

5

    

9

   

8

9

2

 

6

1

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, KT., Liu, MQ., Qin, H., Zhou, YD. (2018). Construction of Uniform Designs—Deterministic Methods. In: Theory and Application of Uniform Experimental Designs. Lecture Notes in Statistics, vol 221. Springer, Singapore. https://doi.org/10.1007/978-981-13-2041-5_3

Download citation

Publish with us

Policies and ethics