Skip to main content

Comparative Analysis of the Performance of Wavelet-Based and Stand-alone Models in Capturing Non-stationarity in Climate Downscaling

  • Conference paper
  • First Online:
Water Resources and Environmental Engineering II

Abstract

Non-stationarity is an intrinsic property of all natural processes, and addressing the same is crucial for climatic downscaling models. Wavelet-based models have been used to address the non-stationarity in the individual predictor (explanatory) time series where each predictor is “decomposed” into its discrete wavelet components at multiple time–frequency resolutions. However, in the warming climate, the predictor–predictand relationships (PPRs) are getting unpredictable. Hence, it is important to understand if the wavelet-based approach can capture the non-stationary PPR better than the stand-alone models. This paper provides an experimental approach to compare the strength of wavelet-based and stand-alone regression models when applied to downscale mean monthly temperature, from general circulation models (GCMs). For this study, we use Can CM4 GCM model to downscale temperature at multiple locations in the Krishna River Basin. Regression coefficients of the recursively updated models are compared for the wavelet-based and the stand-alone models for the length of the validation period. The comparison shows that the regression coefficients from the wavelet-based models capture higher variance compared to the stand-alone models and hence were able to capture the changing PPRs in the downscaling models with greater accuracy. The statistical performance indices reinforce the finding that wavelet-based models consistently outperformed the stand-alone models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carter, T.R., Kenkyū, K.K.K.C.K.: IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations: Part of the IPCC Special Report to the First Session of the Conference of the Parties to the UN Framework Convention on Climate Change. London (1994)

    Google Scholar 

  2. Lakhanpal, A., Sehgal, V., Maheswaran, R., Khosa, R., Sridhar, V.: A non-linear and non-stationary perspective for downscaling mean monthly temperature: a wavelet coupled second order Volterra model. Stoch. Environ. Res. Risk Assess., 1–23

    Google Scholar 

  3. Sehgal, V., Lakhanpal, A., Maheswaran, R., Khosa, R., Sridhar, V.: Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling. J. Hydrol. 556, 1078–1095 (2016)

    Article  Google Scholar 

  4. Wigley, T., Jones, P., Briffa, K., Smith, G.: Obtaining sub-grid-scale information from coarse-resolution general circulation model output. J. Geophys. Res. Atmos. 95, 1943–1953 (1990)

    Article  Google Scholar 

  5. Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Change 62, 189–216 (2004)

    Article  Google Scholar 

  6. Ghosh, S., Mujumdar, P.: Future rainfall scenario over Orissa with GCM projections by statistical downscaling. Curr. Sci. 90, 396–404 (2006)

    Google Scholar 

  7. Goyal, M.K., Ojha, C.: Downscaling of surface temperature for lake catchment in an arid region in India using linear multiple regression and neural networks. Int. J. Climatol. 32, 552–566 (2012)

    Article  Google Scholar 

  8. Cawley, G.C., Haylock, M.R., Dorling, S.R., Goodess, C., Jones, P.D.: Statistical downscaling with artificial neural networks. In: ESANN, pp. 167–172 (2003)

    Google Scholar 

  9. Jeong, D., St-Hilaire, A., Ouarda, T., Gachon, P.: Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada. Stoch. Env. Res. Risk Assess. 26, 633–653 (2012)

    Article  Google Scholar 

  10. Aksornsingchai, P., Srinilta, C.: Statistical downscaling for rainfall and temperature prediction in Thailand. In: Proceedings of the International Multiconference of Engineers and Computer Scientists, Citeseer (2011)

    Google Scholar 

  11. Anandhi, A., Srinivas, V., Nanjundiah, R.S., Nagesh Kumar, D.: Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int. J. Climatol. 28, 401–420 (2008)

    Article  Google Scholar 

  12. Sachindra, D., Huang, F., Barton, A., Perera, B.: Statistical Downscaling of General Circulation Model Outputs to Catchment Streamflows (2011)

    Google Scholar 

  13. Ghosh, S., Mujumdar, P.: Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv. Water Resour. 31, 132–146 (2008)

    Article  Google Scholar 

  14. Zhan, C., Han, J., Hu, S., Liu, L., Dong, Y.: Spatial downscaling of GPM annual and monthly precipitation using regression-based algorithms in a mountainous area. Adv. Meteorol. (2018)

    Google Scholar 

  15. Wang, C., Xu, J., Chen, Y., Bai, L., Chen, Z.: A hybrid model to assess the impact of climate variability on streamflow for an ungauged mountainous basin. Clim. Dyn. 50, 2829–2844 (2018)

    Article  Google Scholar 

  16. Alemohammad, S.H., Kolassa, J., Prigent, C., Aires, F., Gentine, P.: Global Downscaling of Remotely-Sensed Soil Moisture using Neural Networks

    Google Scholar 

  17. Moller, J., Jovanovic, N., Garcia, C.L., Bugan, R.D., Mazvimavi, D.: Validation and downscaling of Advanced Scatterometer (ASCAT) soil moisture using ground measurements in the Western Cape, South Africa. South Afr. J. Plant Soil 35, 9–22 (2018)

    Article  Google Scholar 

  18. Goodarzi, M., Abedi-Koupai, J., Heidarpour, M.: Investigating impacts of climate change on irrigation water demands and its resulting consequences on groundwater using CMIP5 models. Groundwater (2018)

    Google Scholar 

  19. Miro, M.E., Famiglietti, J.S.: Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps of California’s Central Valley. Remote Sens. 10, 143 (2018)

    Article  Google Scholar 

  20. Guo, B., Zhang, J., Xu, T.: Comparison of two statistical climate downscaling models: a case study in the Beijing region, China. Int. J. Water 12, 22–38 (2018)

    Article  Google Scholar 

  21. Sachindra, D., Perera, B.: Annual statistical downscaling of precipitation and evaporation and monthly disaggregation. Theoret. Appl. Climatol. 131, 181–200 (2018)

    Article  Google Scholar 

  22. Salvi, K., Ghosh, S., Ganguly, A.R.: Credibility of statistical downscaling under nonstationary climate. Clim. Dyn. 46, 1991–2023 (2016)

    Article  Google Scholar 

  23. Wang, Y., Sivandran, G., Bielicki, J.M.: The stationarity of two statistical downscaling methods for precipitation under different choices of cross-validation periods. Int. J. Climatol. 38, e330–e348 (2018)

    Article  Google Scholar 

  24. Sridhar, V., Nayak, A.: Implications of climate-driven variability and trends for the hydrologic assessment of the Reynolds Creek Experimental Watershed, Idaho. J. Hydrol. 385, 183–202 (2010). https://doi.org/10.1016/j.jhydrol.2010.02.020

    Article  Google Scholar 

  25. Jin, X., Sridhar, V.: Impacts of climate change on hydrology and water resources in the Boise and Spokane River Basins. J. Am. Water Resour. Assoc. 48(2), 197–220 (2012). https://doi.org/10.1111/j.1752-1688.2011.00605.x

    Article  Google Scholar 

  26. Hertig, E., Jacobeit, J.: A novel approach to statistical downscaling considering nonstationarities: application to daily precipitation in the Mediterranean area. J. Geophys. Res. Atmos. 118, 520–533 (2013)

    Article  Google Scholar 

  27. Sachindra, D., Perera, B.: Statistical downscaling of general circulation model outputs to precipitation accounting for non-stationarities in predictor-predictand relationships. PLoS ONE 11, e0168701 (2016)

    Article  CAS  Google Scholar 

  28. Cai, X., Wang, D., Zhu, T., Ringler, C.: Assessing the regional variability of GCM simulations. Geophys. Res. Lett. 36 (2009)

    Article  Google Scholar 

  29. Agarwal, A., Maheswaran, R., Sehgal, V., Khosa, R., Sivakumar, B., Bernhofer, C.: Hydrologic regionalization using wavelet-based multiscale entropy method. J. Hydrol. 538, 22–32 (2016)

    Article  Google Scholar 

  30. Agarwal, A., Maheswaran, R., Khosa, R.: (2015). Hydrologic Regionalization Using Wavelet Based Multiscale Entropy Technique. Department of Civil Engineering, IIT Delhi

    Google Scholar 

  31. Ball, G.H., Hall, D.J.: A clustering technique for summarizing multivariate data. Behav. Sci. 12, 153–155 (1967)

    Article  CAS  Google Scholar 

  32. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892 (2002)

    Article  Google Scholar 

  33. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, pp. 281–297 (1967)

    Google Scholar 

  34. Bolshakova, N., Azuaje, F.: Machaon CVE: cluster validation for gene expression data. Bioinformatics 19, 2494–2495 (2003)

    Article  CAS  Google Scholar 

  35. Davies, D.L., Bouldin, D.W.: (1979). A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell., 224–227

    Article  Google Scholar 

  36. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters (1973)

    Article  Google Scholar 

  37. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001)

    Article  Google Scholar 

  38. Kasturi, J., Acharya, R., Ramanathan, M.: An information theoretic approach for analyzing temporal patterns of gene expression. Bioinformatics 19, 449–458 (2003)

    Article  CAS  Google Scholar 

  39. Sehgal, V., Chatterjee, C.: Auto updating wavelet based MLR models for monsoonal river discharge forecasting. Int. J. Civ. Eng. Res. 5, 401–406 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataramana Sridhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sehgal, V., Sridhar, V., Rathinasamy, M. (2019). Comparative Analysis of the Performance of Wavelet-Based and Stand-alone Models in Capturing Non-stationarity in Climate Downscaling. In: Rathinasamy, M., Chandramouli, S., Phanindra, K., Mahesh, U. (eds) Water Resources and Environmental Engineering II. Springer, Singapore. https://doi.org/10.1007/978-981-13-2038-5_18

Download citation

Publish with us

Policies and ethics