Emotion Analysis of Twitter Data Using Hashtag Emotions

  • Prerna GoelEmail author
  • Reema Thareja
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 899)


Twitter, being a social networking service used by millions of people to express their opinions, emotions on number of topics in form of short messages, makes it rich source of data for sentiment and emotion analysis. This paper analyses the various emotions expressed by twitter users and finds the most and least expressed emotion on twitter using sentiment analysis. Because of the recent trend of using hashtags with tweets, task of extracting tweets using specific hashtag keyword has simplified. These hashtags are utilized in this paper to extract tweets specifying particular emotions.


Twitter mining Sentiment analysis Comparison cloud 


  1. 1.
    Hasan, M., Rundensteiner, E., Agu, E.: EMOTEX: Detecting emotions in Twitter messages. In: ASE BigData/SocialCom/CyberSecurity Conference (2014)Google Scholar
  2. 2.
    Dugan, L.: Twitter 101: why use hashtags? (2011). Accessed 31 Jan 2018
  3. 3.
    Twitter (2018). Accessed 25 Jan 2018
  4. 4.
    Wolny, W.: Emotion analysis of Twitter data that use emoticons and emoji ideograms. In: 25th International Conference on Information Systems Development (2016)Google Scholar
  5. 5.
    Sentiment Analysis (2018). Accessed 3 Jan 2018
  6. 6.
    Sharma, P., Agrawal, A., Alai, L., Garg, A.: Challenges and techniques in preprocessing for Twitter data. Int. J. Eng. Sci. Comput. 7(4), 6611–6613 (2017)Google Scholar
  7. 7.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2004) (2004)Google Scholar
  8. 8.
    Liu, B.: Sentiment analysis and subjectivity. In: Handbook of Natural Language Processing, 2nd edn. (2010)Google Scholar
  9. 9.
    Wordle - Beautiful Word Clouds. Accessed 15 Jan 2018
  10. 10.
    Counting Characters - Twitter Developers. Accessed 18 Mar 2018
  11. 11.
    Ortony, A., Turner, T.J.: What’s basic about basic emotions? Psychol. Rev. 97(3), 315 (1990)CrossRefGoogle Scholar
  12. 12.
    Mohamma, S.M., Kiritchenko, S.: Using hashtags to capture fine emotion categories from tweets. Comput. Intell. 31(2), 301–326 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gama, J., Rambocas, M.: Marketing research: the role of sentiment analysis (2013)Google Scholar
  14. 14.
    Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using Twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 241–249 (2010)Google Scholar
  15. 15.
    Cherian, P.: Extract tweets from within R (2016). Accessed 18 Jan 2018
  16. 16.
    Standard search API - Twitter Developers. Accessed 18 Jan 2018
  17. 17.
    Jalayer Academy: R - Twitter mining with R (part 1) [Video File] (2015).
  18. 18.
    Jalayer Academy: Text mining (part 4) - positive and negative terms for sentiment analysis in R [Video File] (2017).
  19. 19.
    Jalayer Academy: Text mining (part 5) - import a Corpus in R [Video File] (2017).
  20. 20.
    Jalayer Academy: Text mining (part 6) - cleaning Corpus text in R [Video File] (2017).
  21. 21.
    Jalayer Academy: Text mining (part 7) - comparison Wordcloud in R [Video File] (2017).
  22. 22.
    Saif, H., He, Y., Alani, H.: Semantic sentiment analysis of Twitter. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 508–524. Springer, Heidelberg (2012). Scholar
  23. 23.
    Pak, A., Paroubek, P.: Twitter as a Corpus for sentiment analysis and opinion mining. In: Proceedings of the Seventh Conference on International Language Resources and Evaluation (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceShyama Prasad Mukherjee College, University of DelhiNew DelhiIndia

Personalised recommendations