Energy Efficient Transmission in the Presence of Interference for Wireless Sensor Networks

  • Ajay SikandarEmail author
  • Sushil Kumar
  • Prashant Singh
  • Manoj Kumar Tyagi
  • Durgesh Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 899)


Minimizing Energy consumption in a wireless sensor network has become a challenging issue. Energy consumption in transmission is higher in the presence of interfering nodes due to more re-transmissions required for a successful transmission. In this paper, energy consumption model has been presented. Mathematical models for Rayleigh interference have been derived. Energy efficient algorithm for interference minimization has been investigated. The simulation result has been carried out in MATLAB. The proposed model consumes low energy and reduces interference in the presence of one interferer, two interferer and multiple interferers.


Rayleigh interference Signal to interference ratio WSNs 


  1. 1.
    Akyildiz, I.F., Su, W., Sankaransubramaniam, Y., Cayirci, E.: Wireless sensor network: a survey. Comput. Netw. 38(4), 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Demirkol, I., Ersoy, C., Alagoz, F.: MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag. 44(4), 115–121 (2006)CrossRefGoogle Scholar
  3. 3.
    Ma, J., Lou, W., Wu, Y., Li, X., Chen, G.: Energy efficient TDMA sleep scheduling in wireless sensor network. In: Proceedings of IEEE Infocom, pp. 630–638 (2009)Google Scholar
  4. 4.
    Wang, W., Wang, H., Peng, D., Sarif, H.: An energy efficient pre-scheduling for hybrid CSMA/TDMA in wireless sensor network. In: 10th IEEE Singapore International Conference on Communication Systems, pp. 1–5 (2006)Google Scholar
  5. 5.
    Wang, W., Wang, Y., Li, X.Y., Song, W.Z., Frieder, O.: Efficient interference-aware TDMA link scheduling for static wireless networks. In: MOBICOM, pp. 262–273 (2006)Google Scholar
  6. 6.
    Lu, G., Krishnamachari, B.: Energy efficient joint scheduling and power control for wireless sensor network. In: 2nd Annual Conference on Sensor and Ad Hoc Communications and Networks, pp. 362–373. IEEE (2005)Google Scholar
  7. 7.
    Fang, L., Bi, G., Kot, A.C.: New method of performance analysis for diversity reception with correlated Rayleigh-fading signals. IEEE Trans. Veh. Technol. 49(5), 1807–1812 (2000)CrossRefGoogle Scholar
  8. 8.
    Pantazis, N.A., Vergadosb, D.J., Vergados, D.D., Douligeris, C.: Energy efficiency in wireless sensor networks using sleep mode TDMA scheduling. Ad Hoc Netw. 7(2), 322–343 (2008)CrossRefGoogle Scholar
  9. 9.
    Miao, G., Himayat, N., Li, G.Y., Koc, A.T., Talwar, S.: Interference-aware energy-efficient power optimization. In: Proceedings of IEEE ICC, pp. 1–5 (2009)Google Scholar
  10. 10.
    Ergen, S.C., Varaiya, P.: TDMA scheduling algorithms for wireless sensor network. Wirel. Netw. 16(4), 985–997 (2010)CrossRefGoogle Scholar
  11. 11.
    Sowerby, K.W., Williamson, A.G.: Outage probability calculation for a mobile radio system having multiple Rayleigh fading multiple Rayleigh interferers. IEEE Electron. Lett. 23(11), 600–601 (1987)CrossRefGoogle Scholar
  12. 12.
    Kumar, S., Lobiyal, D.K.: Impact of interference on coverage in wireless sensor networks. Wirel. Pers. Commun. 74(2), 683–701 (2014)CrossRefGoogle Scholar
  13. 13.
    Heinzelman, W.: Application-Specific Protocol Architectures for Wireless Networks. Ph.D. thesis, Massachusetts Institute of Technology (2000)Google Scholar
  14. 14.
    Farhan, L., Kharel, R., Kaiwartya, O., Hammoudeh, M., Adebisi, B.: Towards green computing for Internet of Things: energy oriented path and message scheduling approach. Sustain. Cities Soc. 38, 195–204 (2018)CrossRefGoogle Scholar
  15. 15.
    Kumar, K., Kumar, S., Kaiwartya, O., Cao, Y., Lloret, J., Aslam, N.: Cross-layer energy optimization for IoT environments: technical advances and opportunities. Energies 10(12), 2073 (2017)CrossRefGoogle Scholar
  16. 16.
    Ullah, F., Abdullah, A.H., Kaiwartya, O., Lloret, J., Arshad, M.M.: EETP-MAC: energy efficient traffic prioritization for medium access control in wireless body area networks. Telecommun. Syst., 1–23 (2017). (Online published)Google Scholar
  17. 17.
    Zahhad, M., Ahmed, S., Sabor, N., Sasaki, S.: Mobile sink- based adaptive immune energy – efficient clustering protocol for improving the lifetime and stability period of wireless sensor networks. IEEE Sens. J. 15(18), 4576–4585 (2015)CrossRefGoogle Scholar
  18. 18.
    Kaiwartya, O., Kumar, S., Abdullah, A.H.: Analytical model of deployment methods for application of sensors in non hostile environment. Wirel. Pers. Commun. 97(1), 1517–1536 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ajay Sikandar
    • 1
    Email author
  • Sushil Kumar
    • 2
  • Prashant Singh
    • 3
  • Manoj Kumar Tyagi
    • 1
  • Durgesh Kumar
    • 4
  1. 1.Department of Information TechnologyG.L. Bajaj Institute of Technology and ManagementGreater NoidaIndia
  2. 2.Jawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Northern India Engineering CollegeNew DelhiIndia
  4. 4.Department of Computer ScienceG.L. Bajaj Institute of Technology and ManagementGreater NoidaIndia

Personalised recommendations