Performance Analysis of Time Series Forecasting Using Machine Learning Algorithms for Prediction of Ebola Casualties

  • Manish Kumar PandeyEmail author
  • Karthikeyan Subbiah
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 899)


There is an immense concern on our vigilance for controlling the spread of pandemics such as Ebola, Zika, and H1N1 etc. through state of art technology. The dynamics become very complex of epidemics in sweeping population. Efficient descriptive, predictive, preventive and prescriptive analyses on the huge data generated by SMAC are very crucial for valuable arrangement and associated responsive tactics. In this paper, we have proposed the use of machine learning techniques for performance evaluation of time series forecasting of Ebola casualties. By experimenting without lag creation, we achieved the best results in the MAE of 7.85%, RMSE value of 61.14%, and Direction Accuracy of 85.99% with Random Tree Classifier. Thus we can conclude that by using these models for forecasting epidemic spread and developing public health policies leads the health authorities to ensure the appropriate actions for the control of the outbreak.


SMAC Epidemic Forecasting Ebola Time series forecasting Random tree 


  1. 1.
    Pyne, S., Vullikanti, A.K.S., Marathe, M.V.: Big Data applications in health sciences and epidemiology. In: Handbook of Statistics, vol. 33, pp. 171–202 (2015). ISSN 0169-7161Google Scholar
  2. 2.
    WHO. Ebola virus disease: Fact sheet (2018).
  3. 3.
    Last, J.: A Dictionary of Epidemiology, 4th edn. Oxford University Press, New York (2001). Scholar
  4. 4.
    Brauer, F., van den Driessche, P., Wu, J. (eds.): Mathematical Epidemiology. LNM, vol. 1945. Springer, Heidelberg (2008). Scholar
  5. 5.
    IDC. IDC predictions 2013: Competing on the 3rd platform (2012).
  6. 6.
    Gartner. The Nexus of Forces: Social, Mobile, Cloud and Information (2012).
  7. 7.
    Pandey, M.K., Subbiah, K.: A novel storage architecture for facilitating efficient analytics of health informatics Big Data in cloud. In: IEEE International Conference on Computer and Information Technology (CIT), pp. 578–585 (2016).
  8. 8.
    Bisset, K., Chen, J., Feng, X., Vullikanti, A., Marathe, M.: EpiFast: a fast algorithm for large scale realistic epidemic simulation s on distributed memory systems. In: Proceeding of 23 ACM International Conference on Supercomputing (ICS-2009). ACM Press, New York (2009a)Google Scholar
  9. 9.
    Salathé, M., et al.: Digital epidemiology. PLoS Comput. Biol. 8(7), e1002616 (2012)CrossRefGoogle Scholar
  10. 10.
    Nsoesie, E.O., Brownstein, J.S., Ramakrishnan, N., Marathe, M.: A systematic review of studies on forecasting the dynamics of influenza outbreaks. Influenza Other Respir. Viruses 8(3), 309–316 (2013)CrossRefGoogle Scholar
  11. 11.
    Nishiura, H.: Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009). BioMed. Eng. Online 10(1), 15 (2011)CrossRefGoogle Scholar
  12. 12.
    Ohkusa, Y., Sugawara, T., Taniguchi, K., Okabe, N.: Real-time estimation and prediction for pandemic A/H1N1(2009) in Japan. J. Infect. Chemother. 17(4), 468–472 (2011)CrossRefGoogle Scholar
  13. 13.
    Hall, I.M., Gani, R., Hughes, H.E., Leach, S.: Real-time epidemic forecasting for pandemic influenza. Epidemiol. Infect. 135(3), 372–385 (2007)CrossRefGoogle Scholar
  14. 14.
    Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J., Balcan, D., Goncalves, B., Perra, N., Colizza, V., Vespignani, A.: Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med. 10(1), 165 (2012). ISSN 1741-7015Google Scholar
  15. 15.
    Shaman, J., Karspeck, A.: Forecasting seasonal outbreaks of influenza. Proc. Natl. Acad. Sci. U.S.A. 109(50), 20425–20430 (2012)CrossRefGoogle Scholar
  16. 16.
    Shaman, J., Goldstein, E., Lipsitch, M.: Absolute humidity and pandemic versus epidemic influenza. Am. J. Epidemiol. 173(2), 127–135 (2010)CrossRefGoogle Scholar
  17. 17.
    Shaman, J., Pitzer, V.E., Viboud, C., Grenfell, B.T., Lipsitch, M.: Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 8(2), e1000316 (2010)CrossRefGoogle Scholar
  18. 18.
    Chakraborty, P., Khadivi, P., Lewis, B., Mahendiran, A., Chen, J., Butler, P., Nsoesie, E.O., Mekaru, S.R., Brownstein, J.S., Marathe, M.V., Ramakrishnan, N.: Forecasting a moving target: ensemble models for ILI case count predictions. In: Proceedings of the 2014 SIAM International Conference on Data Mining, 28 April 2014, pp. 262–270 (2014b)Google Scholar
  19. 19.
    Pandey, M.K., Karthikeyan, S.: Performance analysis of time series forecasting of ebola casualties using machine learning algorithm. In: Proceedings ITISE 201, Granada, 18–20 September (2017). ISBN 978-84-17293-01-7Google Scholar
  20. 20.
    Ramadona, A.L., Lazuardi, L., Hii, Y.L., Holmner, Å., Kusnanto, H., Rocklöv, J.: Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS ONE 11(3), e0152688 (2016). Scholar
  21. 21.
    Liao, Y., et al.: A new method for assessing the risk of infectious disease outbreak. Sci. Rep. 7, 40084 (2017). Scholar
  22. 22.
    Sharma, S., Mangat, V.: Relevance vector machine classification for Big Data on Ebola outbreak. In: 2015 1st International Conference on Next Generation Computing Technologies (NGCT), Dehradun, pp. 639–643 (2015).
  23. 23.
    Marathe, M.: Assisting H1N1 and ebola outbreak response through high performance networked epidemiology. In: 2015 IEEE International Parallel and Distributed Processing Symposium, Hyderabad, India, p. 831 (2015).
  24. 24.
    Ristic, B., Dawson, P.: Real-time forecasting of an epidemic outbreak: Ebola 2014/2015 case study. In: 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, pp. 1983–1990 (2016)Google Scholar
  25. 25.
    Buendia, R.J.M., Solano, G.A.: A disease outbreak detection system using autoregressive moving average in time series analysis. In:  2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), Corfu, pp. 1–5 (2015).
  26. 26.
    Wang, Y., Gu, J.: A hybrid prediction model applied to diarrhea time series. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, pp. 1096–1102 (2015).
  27. 27.
  28. 28.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)CrossRefGoogle Scholar
  29. 29.
    Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K.: Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Networks 11(5), 1189–1193 (1999). Scholar
  30. 30.
    Smola, A.J., Schoelkopf, B.: A tutorial on support vector regression (1998)Google Scholar
  31. 31.
    Caruana, R., Niculescu, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: The International Conference on Machine Learning (ICML 2004) (2004)Google Scholar
  32. 32.
    Breiman, Leo: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar
  33. 33.
    Breiman, Leo: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer Science, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations