Advertisement

Content Credibility Check on Twitter

  • Priya GuptaEmail author
  • Vihaan Pathak
  • Naman Goyal
  • Jaskirat Singh
  • Vibhu Varshney
  • Sunil Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 899)

Abstract

During large-scale events, a large volume of content is posted on Twitter, but not all of this content is trustworthy. The presence of spam, advertisements, rumours and fake images reduces the value of information collected from Twitter. In this research work, various facets of assessing the credibility of user–generated content on Twitter are described, and a novel real-time system to assess the integrity of tweets has been proposed. The system has been proposed to achieve this by assigning a score or rating to content on Twitter to indicate its trustworthiness.

Keywords

Fact-checking Knowledge graph String matching 

References

  1. 1.
    Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election (No. w23089). National Bureau of Economic Research (2017)Google Scholar
  2. 2.
    Carvalho, C., Klagge, N., Moench, E.: The persistent effects of a false news shock. J. Empir. Finance 18(4), 597–615 (2011)CrossRefGoogle Scholar
  3. 3.
    Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM, March 2011Google Scholar
  4. 4.
    Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Computational fact checking from knowledge networks. PLoS One 10(6), e0128193 (2015).  https://doi.org/10.1371/journal.pone.0128193CrossRefGoogle Scholar
  5. 5.
    DeDeo, S.: Collective phenomena and non-finite state computation in a human social system. PLoS One 8(10), e75818 (2013)CrossRefGoogle Scholar
  6. 6.
    De Longueville, B., Smith, R.S., Luraschi, G.: Omg, from here, i can see the flames!: a use case of mining location based social networks to acquire spatio-temporal data on forest fires. In: Proceedings of the 2009 International Workshop on Location Based Social Networks, pp. 73–80. ACM, November 2009Google Scholar
  7. 7.
    Finn, S., Metaxas, P.T., Mustafaraj, E., O’Keefe, M., Tang, L., Tang, S., Zeng, L.: TRAILS: a system for monitoring the propagation of rumors on twitter. In: Computation and Journalism Symposium, NYC, NY (2014)Google Scholar
  8. 8.
    Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: TweetCred: real-time credibility assessment of content on Twitter. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 228–243. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13734-6_16CrossRefGoogle Scholar
  9. 9.
    Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 729–736. ACM, May 2013Google Scholar
  10. 10.
    Gupta, P., Kamra, A., Thakral, R., Aggarwal, M., Bhatti, S., Jain, V.: A proposed framework to analyze abusive tweets on the social networks. Int. J. Mod. Educ. Comput. Sci. 1, 46–56 (2018).  https://doi.org/10.5815/ijmecs.2018.01.05. http://www.mecs-press.org/CrossRefGoogle Scholar
  11. 11.
  12. 12.
    FiB. (n.d.). https://devpost.com/software/fib. Accessed 14 Jan 2017
  13. 13.
    Docs - Twitter Developers. (n.d.). https://dev.twitter.com/streaming/overview. Accessed 20 Jan 2017
  14. 14.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  15. 15.
    Maia, M., Almeida, J., Almeida, V.: Identifying user behavior in online social networks. In: Proceedings of the 1st Workshop on Social Network Systems, pp. 1–6. ACM, April 2008Google Scholar
  16. 16.
    Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we RT?. In: Proceedings of the First Workshop on Social Media Analytics, pp. 71–79. ACM, July 2010Google Scholar
  17. 17.
    Morstatter, F., Pfeffer, J., Liu, H., Carley, K.M.: Is the sample good enough? comparing data from twitter’s streaming api with twitter’s firehose (2013). arXiv preprint, arXiv:1306.5204
  18. 18.
    O’Donovan, J., Kang, B., Meyer, G., Hllerer, T., Adali, S.: Credibility in context: an analysis of feature distributions in twitter. ASE. In: IEEE International Conference on Social Computing, SocialCom (2012)Google Scholar
  19. 19.
    Oh, O., Agrawal, M., Rao, H.R.: Information control and terrorism: tracking the Mumbai terrorist attack through twitter. Inf. Syst. Front. 13(1), 33–43 (2011)CrossRefGoogle Scholar
  20. 20.
    Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Patil, S., Flammini, A., Menczer, F.: Detecting and tracking the spread of astroturf memes in microblog streams (2010). arXiv preprint, arXiv:1011.3768
  21. 21.
    Wang, A.H.: Don’t follow me: Spam detection in twitter. In: Proceedings of the 2010 International Conference on Security and Cryptography (SECRYPT), pp. 1–10. IEEE, July 2010Google Scholar
  22. 22.
    Wu, Y., Agarwal, P.K., Li, C., Yang, J., Yu, C.: Toward computational fact-checking. Proc. VLDB Endow. 7(7), 589–600 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Priya Gupta
    • 1
    Email author
  • Vihaan Pathak
    • 1
  • Naman Goyal
    • 1
  • Jaskirat Singh
    • 1
  • Vibhu Varshney
    • 1
  • Sunil Kumar
    • 1
  1. 1.Maharaja Agrasen CollegeUniversity of DelhiDelhiIndia

Personalised recommendations