Minimizing Route Coupling Effect in Multipath Video Streaming Over Vehicular Network

  • Ahmed AliyuEmail author
  • Abdul Hanan Abdullah
  • Ajay Sikandar
  • Usman M. Joda
  • Fatai I. Sadiq
  • Abubakar Ado
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 899)


Multipath video streaming is one of the most commonly used strategies for high data rate transmission. It is employed to achieve lower delay, load balancing, and path diversity. However, multipath strategy experiences the problem of route coupling due to concurrent transmission via multiple paths. This problem leads to data collision and wireless contention. Therefore, in this paper, estimation of the angle between multiple paths to minimize route coupling effect and the use of Packet Error Rate (PER) as a link quality parameter for multipath video streaming has been considered in order to achieve qualitative video delivery, by minimizing interference due to route coupling effect. Firstly, mathematical formulations of the path selection and PER parameters based on the angle of forwarding are presented. Further, the numerical formulations are implemented using Matlab. The numerical results are presented showing the probability of the presence of a vehicle in an angle area. The PER is analyzed considering both shadowing and non-shadowing settings. The results based on the PER demonstrate its impact on the angle of path selection, which in turn improve the quality of the video streaming.


Video streaming Multipath Vehicular network Route coupling Forward error correction VANETs 



The research is supported by Ministry of Education Malaysia (MOE) and conducted in collaboration with Research Management Center (RMC) at University Teknologi Malaysia (UTM) under VOT NUMBER: RJ130000.7828.4F708.


  1. 1.
    Hartenstein, H., Laberteaux, K. (eds.): VANET: Vehicular Applications and Inter-networking Technologies, vol. 1. Wiley, Chichester (2009)Google Scholar
  2. 2.
    Aliyu, A., Abdullah, A.H., Kaiwartya, O., Ullah, F., Joda, U.M., Hassan, A.N.: Multi-path video streaming in vehicular communication: approaches and challenges. In: 2017 6th ICT International Student Project Conference (ICT-ISPC), pp. 1–4. IEEE, May 2017Google Scholar
  3. 3.
    Aliyu, A., et al.: Towards video streaming in IoT Environments: vehicular communication perspective. Comput. Commun. 118, 93–119 (2017)CrossRefGoogle Scholar
  4. 4.
    Ahmed, A., Hanan, A.A., Omprakash, K., Usman, M.J., Syed, O.: Mobile Cloud Computing Energy-aware Task Offloading (MCC: ETO). In: Proceedings of the International Conference on Communication and Computing Systems (ICCCS 2016), Gurgaon, India, 9–11 September 2016, p. 359. CRC Press, February 2017Google Scholar
  5. 5.
    Aliyu, A., et al.: Cloud computing in VANETs: architecture, taxonomy, and challenges. IETE Tech. Rev., 1–25, August 2017Google Scholar
  6. 6.
    Xie, H., Boukerche, A., Loureiro, A.A.: A multipath video streaming solution for vehicular networks with link disjoint and node-disjoint. IEEE Trans. Parallel Distrib. Syst. 26, 3223–3235 (2015)CrossRefGoogle Scholar
  7. 7.
    Tsai, M.F., Shieh, C.K., Huang, T.C., Deng, D.J.: Forward-looking forward error correction mechanism for video streaming over wireless networks. IEEE Syst. J. 5, 460–473 (2011)CrossRefGoogle Scholar
  8. 8.
    Rezende, C., Boukerche, A., Ramos, H.S., Loureiro, A.A.: A reactive and scalable unicast solution for video streaming over VANETs. IEEE Trans. Comput. 64, 614–626 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kserawi, M., Jung, S., Lee, D., Sung, J., Rhee, J.K.K.: Multipath video real-time streaming by field-based anycast routing. IEEE Trans. Multimed. 16, 533–540 (2014)CrossRefGoogle Scholar
  10. 10.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, pp. 96–108. ACM, September 2003Google Scholar
  11. 11.
    Kaiwartya, O., Kumar, S.: Guaranteed geocast routing protocol for vehicular adhoc networks in highway traffic environment. Wirel. Pers. Commun. 83, 2657–2682 (2015)CrossRefGoogle Scholar
  12. 12.
    Stojmenovic, I., Ruhil, A.P., Lobiyal, D.K.: Voronoi diagram and convex hull based geocasting and routing in wireless networks. Wirel. Commun. Mob. Comput. 6, 247–258 (2006)CrossRefGoogle Scholar
  13. 13.
    Kaiwartya, O., Kumar, S., Lobiyal, D.K., Abdullah, A.H., Hassan, A.N.: Performance improvement in geographic routing for vehicular Ad Hoc networks. Sensors 14, 22342–22371 (2014)CrossRefGoogle Scholar
  14. 14.
    Brahmi, N., Boussedjra, M., Mouzna, J., Bayart, M.: Adaptative movement aware routing for vehicular ad hoc networks. In: Proceedings of the 2009 International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly, pp. 1310–1315. ACM, June 2009Google Scholar
  15. 15.
    Gong, J., Xu, C.Z., Holle, J.: Predictive directional greedy routing in vehicular ad hoc networks. In: 2007 27th International Conference IEEE on Distributed Computing Systems Workshops, ICDCSW 2007, p. 2, June 2007Google Scholar
  16. 16.
    Tu, H., Peng, L., Li, H., Liu, F.: GSPR-MV: a routing protocol based on motion vector for VANET. In: 2014 12th International Conference IEEE on Signal Processing (ICSP), pp. 2354–2359, October 2014Google Scholar
  17. 17.
    Goldsmith, A.: Wireless Communications. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  18. 18.
    Wang, R., Rezende, C., Ramos, H.S., Pazzi, R.W., Boukerche, A., Loureiro, A.A.: LIAITHON: a location-aware multipath video streaming scheme for urban vehicular networks. In: IEEE Symposium on Computers and Communications (ISCC), pp. 436–441. IEEE, July 2012Google Scholar
  19. 19.
    Wang, R., Almulla, M., Rezende, C., Boukerche, A.: Video streaming over vehicular networks by a multiple path solution with error correction. In: IEEE International Conference on Communications (ICC), pp. 580–585. IEEE, June 2014Google Scholar
  20. 20.
    De Felice, M., Cerqueira, E., Melo, A., Gerla, M., Cuomo, F., Baiocchi, A.: A distributed beaconless routing protocol for real-time video dissemination in multimedia VANETs. Comput. Commun. 58, 40–52 (2015)CrossRefGoogle Scholar
  21. 21.
    Song, W., Zhuang, W.: Performance analysis of probabilistic multipath transmission of video streaming traffic over multi-radio wireless devices. IEEE Trans. Wirel. Commun. 11(4), 1554–1564 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhu, Z., Li, S., Chen, X.: Design QoS-aware multi-path provisioning strategies for efficient cloud-assisted SVC video streaming to heterogeneous clients. IEEE Trans. Multimed. 15(4), 758–768 (2013)CrossRefGoogle Scholar
  23. 23.
    Li, M., Yang, Z., Lou, W.: Codeon: cooperative popular content distribution for vehicular networks using symbol level network coding. IEEE J. Sel. Areas Commun. 29(1), 223–235 (2011)CrossRefGoogle Scholar
  24. 24.
    Zou, J., Xiong, H., Li, C., Song, L., He, Z., Chen, T.: Prioritized flow optimization with multi-path and network coding based routing for scalable multirate multicasting. IEEE Trans. Circuits Syst. Video Technol. 21(3), 259–273 (2011)CrossRefGoogle Scholar
  25. 25.
    Raw, R.S., Das, S.: Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments. Wirel. Pers. Commun. 68(1), 65–78 (2013)CrossRefGoogle Scholar
  26. 26.
    Galaviz-Mosqueda, G.A., Aquino-Santos, R., Villarreal-Reyes, S., Rivera-Rodríguez, R., Villaseñor-González, L., Edwards, A.: Reliable freestanding position-based routing in highway scenarios. Sensors 12(11), 14262–14291 (2012)CrossRefGoogle Scholar
  27. 27.
    Cha, S.H., Lee, K.W., Cho, H.S.: Grid-based predictive geographical routing for inter-vehicle communication in urban areas. Int. J. Distrib. Sens. Netw. 8(3), 819497 (2012)CrossRefGoogle Scholar
  28. 28.
    Soares, V.N., Rodrigues, J.J., Farahmand, F.: GeoSpray: a geographic routing protocol for vehicular delay-tolerant networks. Inf. Fusion 15, 102–113 (2014)CrossRefGoogle Scholar
  29. 29.
    Liu, C., Chigan, C.: RPB-MD: Providing robust message dissemination for vehicular ad hoc networks. Ad Hoc Netw. 10(3), 497–511 (2012)CrossRefGoogle Scholar
  30. 30.
    Sermpezis, P., Koltsidas, G., Pavlidou, F.N.: Investigating a junction-based multipath source routing algorithm for VANETs. IEEE Commun. Lett. 17(3), 600–603 (2013)CrossRefGoogle Scholar
  31. 31.
    Chen, Y., Bell, M.G., Bogenberger, K.: Reliable pretrip multipath planning and dynamic adaptation for a centralized road navigation system. IEEE Trans. Intell. Transp. Syst. 8(1), 14–20 (2007)CrossRefGoogle Scholar
  32. 32.
    Huang, X., Fang, Y.: Performance study of node-disjoint multipath routing in vehicular ad hoc networks. IEEE Trans. Veh. Technol. 58(4), 1942–1950 (2009)CrossRefGoogle Scholar
  33. 33.
    Hassan, A.N., Abdullah, A.H., Kaiwartya, O., Sheet, D.K., Aliyu, A.: Geographic forwarding techniques: limitations and future challenges in IVC. In: 2017 6th ICT International Student Project Conference (ICT-ISPC), pp. 1–5. IEEE, 23 May 2017Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ahmed Aliyu
    • 1
    • 2
    Email author
  • Abdul Hanan Abdullah
    • 1
  • Ajay Sikandar
    • 3
  • Usman M. Joda
    • 1
    • 2
  • Fatai I. Sadiq
    • 1
  • Abubakar Ado
    • 4
  1. 1.Faculty of ComputingUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Bauchi State UniversityGadauNigeria
  3. 3.Department of Information TechnologyGL Bajaj Institute of Technology and ManagementGreater NoidaIndia
  4. 4.Northwest Univerity KanoKanoNigeria

Personalised recommendations