Greenhouse Gases: A Historical Perspective



Robert Boyle during the middle of the seventeenth century thought that atmosphere not only contains subtle matter or ether but also filled with the emanations of volcanoes, decaying vegetations, and animals. William Ramsay a century later narrated that the atmospheric air and its analysis will cover a great part of chemistry and physics. However, the actual constituents of the air were identified only in the beginning of the eighteenth century. Carbon dioxide was identified by Joseph Black in 1750. Daniel Rutherford isolated nitrogen. Carl Scheele and Joseph independently identified oxygen a few years later. Henry Cavendish (1781) analyzed the composition of the air as 79.16% nitrogen and 20.84% oxygen irrespective of location and metrological conditions (West 2014).


Joseph Black Higher Stomatal Density Global Change Research Community Swedish Chemist Svante Arrhenius Continuous Dynamic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, J. (2004). Tango in the atmosphere: Ozone and climate change [Online]. Available: [Accessed 27 May 2018].
  2. Ames, J. S. (1902). Marie-Alfred Cornu. The Astrophysical Journal, 15, 299.CrossRefGoogle Scholar
  3. Arrhenius, S. (1896). XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41, 237–276.CrossRefGoogle Scholar
  4. Arrhenius, S., & Holden, E. S. (1897). On the influence of carbonic acid in the air upon the temperature of the earth. Publications of the Astronomical Society of the Pacific, 9, 14–24.CrossRefGoogle Scholar
  5. Asimov, I., & Wool, D. (1985). How did we find out about the atmosphere? New York: Walker.Google Scholar
  6. Bates, D. R., & Nicolet, M. (1950). The photochemistry of atmospheric water vapor. Journal of Geophysical Research, 55, 301–327.CrossRefGoogle Scholar
  7. Beerling, D., Chaloner, W., Huntley, B., & Tooley, M. (1993). Stomatal density responds to the glacial cycle of environmental change. Proceedings of the Royal Society of London B, 251, 133–138.CrossRefGoogle Scholar
  8. Beerling, D. J., Osborne, C., & Chaloner, W. (2001). Evolution of leaf-form in land plants linked to atmospheric CO 2 decline in the late Palaeozoic era. Nature, 410, 352.CrossRefGoogle Scholar
  9. Blackman, F. F. (1905). Optima and limiting factors. Annals of Botany, 19, 281–295.CrossRefGoogle Scholar
  10. Callendar, G. S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 64, 223–240.CrossRefGoogle Scholar
  11. Chapman, S. (1942). The photochemistry of atmospheric oxygen. Reports on Progress in Physics, 9, 92.CrossRefGoogle Scholar
  12. Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Q J Royal Meteorol Soc, 96, 320–325.CrossRefGoogle Scholar
  13. Crutzen, P. (1991). Methane sources and sinks. Nature, 350, 380–381.CrossRefGoogle Scholar
  14. Crutzen, P. J., & Ramanathan, V. (2000). The ascent of atmospheric sciences. Science, 290, 299–304.CrossRefGoogle Scholar
  15. Dean, W. E., & Gorham, E. (1998). Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 26, 535–538.CrossRefGoogle Scholar
  16. Delmas, R. J., Ascencio, J.-M., & Legrand, M. (1980). Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature, 284, 155.CrossRefGoogle Scholar
  17. Dippery, J., Tissue, D., Thomas, R., & Strain, B. (1995). Effects of low and elevated CO2 on C 3 and C 4 annuals. Oecologia, 101, 13–20.CrossRefGoogle Scholar
  18. Dobson, G. M. B., & Harrison, D. (1926). Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proceedings of the Royal Society of London A, 110, 660–693.CrossRefGoogle Scholar
  19. Ehleringer, J. R., Cerling, T. E., & Helliker, B. R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112, 285–299.CrossRefGoogle Scholar
  20. EPA. (2018). Global greenhouse gas emissions data [Online]. Available: [Accessed 18 Apr 2018].
  21. Etheridge, D. M., Steele, L., Langenfelds, R., Francey, R., Barnola, J. M., & Morgan, V. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101, 4115–4128.CrossRefGoogle Scholar
  22. Falkowski, P., Scholes, R., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., & Linder, S. (2000). The global carbon cycle: A test of our knowledge of earth as a system. Science, 290, 291–296.CrossRefGoogle Scholar
  23. Gerhart, L. M., & Ward, J. K. (2010). Plant responses to low [CO2] of the past. New Phytologist, 188, 674–695.CrossRefGoogle Scholar
  24. Hogan, K. B., & Harriss, R. C. (1994). Comment on ‘a dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992’by EJ Dlugokencky et al. Geophysical Research Letters, 21, 2445–2446.CrossRefGoogle Scholar
  25. Indermühle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., & Blunier, T. (1999). Holocene carbon-cycle dynamics based on CO 2 trapped in ice at Taylor Dome, Antarctica. Nature, 398, 121.CrossRefGoogle Scholar
  26. IPCC, (2001). Climate change 2001: The scientific Basis. Contribution of working Group I to the third assessment report of Intergovernmental panel on climate change. In J T Houghton et al (Eds.), Cambridge, London\New York: Cambridge University Press., 881 pp.Google Scholar
  27. IPCC. (2007). IPCC fourth assessment report: Climate change 2007 [Online]. Available: [Accessed 16 Apr 2018].
  28. Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O., & Schmittner, A. (1999). Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284, 464–467.CrossRefGoogle Scholar
  29. Keeling, C. D. (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13, 322–334.CrossRefGoogle Scholar
  30. Keys, T. E. (1941). The development of anesthesia. Anesthesiology J, 2, 552–574.CrossRefGoogle Scholar
  31. Khalil, M., & Rasmussen, R. (1988). Nitrous oxide: Trends and global mass balance over the last 3000 years. Annals of Glaciology, 10, 73–79.CrossRefGoogle Scholar
  32. Levy, H. (1972). Photochemistry of the lower troposphere. Planetary and Space Science, 20, 919–935.CrossRefGoogle Scholar
  33. Li, C., Salas, W., Deangelo, B., & Rose, S. (2006). Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. Journal of Environmental Quality, 35, 1554–1565.CrossRefGoogle Scholar
  34. Lovelock, J. E. (1971). Atmospheric fluorine compounds as indicators of air movements. Nature, 230, 379.CrossRefGoogle Scholar
  35. Machida, T., Nakazawa, T., Fujii, Y., Aoki, S., & Watanabe, O. (1995). Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophysical Research Letters, 22, 2921–2924.CrossRefGoogle Scholar
  36. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of the Atmospheric Sciences, 32, 3–15.CrossRefGoogle Scholar
  37. Matthaei, G. L. C. (1903). Effect of temperature on carbon dioxide assimilation. Annals of Botany, 16, 591–592.Google Scholar
  38. Mitra, A. P. A. S. B. (2002). Climate change and India (Shukla, P.R. et al Eds.). Tata Mc Graw Hill 76.Google Scholar
  39. Molina, M. J., & Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810.CrossRefGoogle Scholar
  40. NOAA. (2018). NOAA’s Annual Greenhouse Gas Index .[Online]. Available: [Accessed 27 May 2018].
  41. Partin, J., Quinn, T., Shen, C.-C., Okumura, Y., Cardenas, M., Siringan, F., Banner, J., Lin, K., Hu, H.-M., & Taylor, F. (2015). Gradual onset and recovery of the younger Dryas abrupt climate event in the tropics. Nature Communications, 6, 8061.CrossRefGoogle Scholar
  42. Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., & Delaygue, G. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429.CrossRefGoogle Scholar
  43. Policy, H. W., Johnson, H. B., Marinot, B. D., & Mayeux, H. S. (1993). Increase in C3 plant water-use efficiency and biomass over glacial to present C02 concentrations. Nature, 361, 61.CrossRefGoogle Scholar
  44. Ramanathan, V., Cicerone, R. J., Singh, H. B., & Kiehl, J. T. (1985). Trace gas trends and their potential role in climate change. Journal of Geophysical Research, 90, 5547–5566.CrossRefGoogle Scholar
  45. Rasmussen, R. A., & Khalil, M. (1984). Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends, and interhemispheric gradient. Journal of Geophysical Research: Atmospheres, 89, 11599–11605.CrossRefGoogle Scholar
  46. REEBURGH, W. (1993). The role of methylotrophy in the global methane budget. Microbial growth on C-1 compounds, 1–14.Google Scholar
  47. Rubin, M. B. (2001). The history of ozone. The Schönbein period, 1839–1868. Bulletin for the History of Chemistry, 26, 40–56.Google Scholar
  48. Sarmiento, J. L., & Siegenthaler, U. (1992). New production and the global carbon cycle. Primary productivity and biogeochemical cycles in the sea. New York: Springer.Google Scholar
  49. Saurer, M., Cherubini, P., Bonani, G., & Siegwolf, R. (2003). Tracing carbon uptake from a natural CO2 spring into tree rings: An isotope approach. Tree Physiology, 23, 997–1004.CrossRefGoogle Scholar
  50. Secretariat, O. (2000). United Nations environment Programme. Synthesis of the reports of the Scientific, Environmental Effects, And technology and economic assessment panels of the Montreal protocol—1999.Google Scholar
  51. Smith, P., Martino, Z. & Cai, D. 2007. ‘Agriculture’, in climate change 2007: Mitigation.Google Scholar
  52. Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D., & Masson-Delmotte, V. (2005). Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science, 310, 1317–1321.CrossRefGoogle Scholar
  53. Uprety, D. C., & Reddy, V. R. (2016). Crop responses to global warming (pp. 1–125). Dordrecht: Springer Science.Google Scholar
  54. Uprety, D. C., Baruah, K. K., & Borah, L. (2011). Methane in rice agriculture. J Sci Indust Res, 70, 401–411.Google Scholar
  55. Uprety, D., Subash, D., Dong, H., Kimball, B. A., Amit, G., & Jigeesha, U. (2012). Technologies for climate change mitigation-agriculture sector (pp. 1–117). Denmark: UNEP, GEF, RISO Centre/TNA guidebook Series.Google Scholar
  56. Wang, W., Yung, Y., Lacis, A., Mo, T. A., & Hansen, J. (1976). Greenhouse effects due to man-made perturbations of trace gases. Science, 194, 685–690.CrossRefGoogle Scholar
  57. Ward, J. K., Antonovics, J., Thomas, R. B., & Strain, B. R. (2000). Is atmospheric CO 2 a selective agent on model C 3 annuals? Oecologia, 123, 330–341.CrossRefGoogle Scholar
  58. West, J. B. (2014). Henry Cavendish (1731–1810): Hydrogen, carbon dioxide, water, and weighing the world. American Journal of Physiology-Lung Cellular and Molecular Physiology, 307, L1–L6.CrossRefGoogle Scholar
  59. Whittenbury, R., Phillips, K., & Wilkinson, J. (1970). Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology, 61, 205–218.Google Scholar
  60. Wright, G. N. (1977). The Yorkshire dales. Newton Abbot: David & Charles Publishers.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Adaptive Cropping System LaboratoryUSDA, ARSBeltsvilleUSA

Personalised recommendations