Historical Analysis of Climate Change and Agriculture



History of the climate has made significant contributions to the understanding of the past climate and could contribute much more than it has to present-day discussions about global climate change knowledge, impacts, and responses (Carey 2012). Climate is basically the history of weather over periods of years, decades, centuries, and more (Edwards 2010). Scholars have used several innovative climate reconstructions and methods to reconstruct the history of climate change (Carey 2012). Their research methods used different sources from radioactive dating, painting, diaries, newspapers, government documents, correspondence, mission reports and daily weather observations, etc. to reconstruct the past climatic conditions (Carey 2012).


Climate Change Knowledge Daily Weather Observations Past Climatic Conditions Mochica Tiwanaku Civilizations 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akkermans, P., & Schwartz, G. (2003). The archaeology of Syria-from complex hunter-gatherers to early Urban Society, ca. 16,000–300 BC.Google Scholar
  2. Alley, R. B. (2014). The two-mile time machine: Ice cores, abrupt climate change, and our future. Princeton, NJ: Princeton University Press.Google Scholar
  3. Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., & Talley, L. D. (2003). Abrupt climate change. Science, 299, 2005–2010.CrossRefGoogle Scholar
  4. An, Z., Colman, S. M., Zhou, W., Li, X., Brown, E. T., Jull, A. T., Cai, Y., Huang, Y., Lu, X., & Chang, H. (2012). Interplay between the westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports, 2, 619.CrossRefGoogle Scholar
  5. Arrhenius, S. (1896). XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41, 237–276.CrossRefGoogle Scholar
  6. Arrhenius, S., & Holden, E. S. (1897). On the influence of carbonic acid in the air upon the temperature of the earth. Publications of the Astronomical Society of the Pacific, 9, 14–24.CrossRefGoogle Scholar
  7. Atwell, W. (2002). Ming China and the “great depression” of the mid-fifteenth century. The Journal of Asian Studie, 61, 83–113.CrossRefGoogle Scholar
  8. Balter, M. (2007). Seeking agriculture’s ancient roots. Science, 316, 1830–1835.CrossRefGoogle Scholar
  9. Baron, W. R. (1989). Retrieving American climate history: A bibliographic essay. Agricultural History, 63, 7–35.Google Scholar
  10. Bar-Yosef, O. (1998). The Natufian culture in the Levant, threshold to the origins of agriculture. Evolutionary Anthropology, 6(5), 159–177.CrossRefGoogle Scholar
  11. Cai, Y., Tan, L., Cheng, H., An, Z., Edwards, R. L., Kelly, M. J., Kong, X., & Wang, X. (2010). The variation of summer monsoon precipitation in Central China since the last deglaciation. Earth and Planetary Science Letters, 291, 21–31.CrossRefGoogle Scholar
  12. Callendar, G. S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 64, 223–240.CrossRefGoogle Scholar
  13. Carey, M. (2012). Climate and history: A critical review of historical climatology and climate change historiography. Wiley Interdisciplinary Reviews: Climate Change, 3, 233–249.Google Scholar
  14. Carson, J. F., Whitney, B. S., Mayle, F. E., Iriarte, J., Prümers, H., Soto, J. D., & Watling, J. (2014). Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proceedings of the National Academy of Sciences, 111, 10497–10502.CrossRefGoogle Scholar
  15. Cullen, H. M., Demenocal, P. B., Hemming, S., Hemming, G., Brown, F. H., Guilderson, T., & Sirocko, F. (2000). Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. Geology, 28, 379–382.CrossRefGoogle Scholar
  16. Demenocal, P. B. (2001). Cultural responses to climate change during the late Holocene. Science, 292, 667–673.CrossRefGoogle Scholar
  17. Dixit, Y., Hodell, D. A., & Petrie, C. A. (2014a). Abrupt weakening of the summer monsoon in Northwest India~ 4100 yr ago. Geology, 42, 339–342.CrossRefGoogle Scholar
  18. Dixit, Y., Hodell, D. A., Sinha, R., & Petrie, C. A. (2014b). Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. Earth and Planetary Science Letters, 391, 16–23.CrossRefGoogle Scholar
  19. Edwards, P. N. (2010). A vast machine: Computer models, climate data, and the politics of global warming. Cambridge, MA/London: Mit Press.Google Scholar
  20. Enzel, Y., Ely, L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S., Baker, V., & Sandler, A. (1999). High-resolution Holocene environmental changes in the Thar Desert, northwestern India. Science, 284, 125–128.CrossRefGoogle Scholar
  21. Fan, K. W. (2015). Climate change and Chinese history: A review of trends, topics, and methods. Wiley Interdisciplinary Reviews: Climate Change, 6, 225–238.CrossRefGoogle Scholar
  22. Fincham, M. W. (2014). The day before yesterday: When abrupt climate change came to the Chesapeake Bay [Online]. Available: [Accessed 20 Apr 2018].
  23. Fuller, D. Q., & Madella, M. (2001). Issues in Harappan archaeobotany: Retrospect and prospect. New Delhi: Indian Council for Historical Research.Google Scholar
  24. Fuller, D. Q., Kingwell-Banham, E., Lucas, L., Murphy, C., & Stevens, C. (2015). Comparing pathways to agriculture. Archaeology International, 18, 61.CrossRefGoogle Scholar
  25. Ge, Q. S., Zheng, J. Y., Hao, Z. X., Shao, X. M., Wang, W. C., & Luterbacher, J. (2010). Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference. Geophysical Research Letters, 37.CrossRefGoogle Scholar
  26. Ge, Q., Hao, Z., Zheng, J., & Shao, X. (2013). Temperature changes over the past 2000 yr in China and comparison with the northern hemisphere. Climate of the Past, 9, 1153.CrossRefGoogle Scholar
  27. Goldberg, P., Berna, F., & Chazan, M. (2015). Deposition and diagenesis in the earlier stone age of Wonderwerk cave, excavation 1, South Africa. African Archaeological Review, 32, 613–643.CrossRefGoogle Scholar
  28. Gupta, A. K. (2004). Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. CURRENT SCIENCE-BANGALORE, 87, 54–59.Google Scholar
  29. Gupta, A. K., Anderson, D. M., & Overpeck, J. T. (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421, 354.CrossRefGoogle Scholar
  30. Haug, G. H., Günther, D., Peterson, L. C., Sigman, D. M., Hughen, K. A., & Aeschlimann, B. (2003). Climate and the collapse of Maya civilization. Science, 299, 1731–1735.CrossRefGoogle Scholar
  31. He, F., Li, K., & Liu, H. (2010). The influence of historical climate change on agriculture in ancient China. Geographical Research, 29, 2289–2297.Google Scholar
  32. Hughes, J. D. (1992). History of agriculture and environment. Agricultural History, 66, 12–22.Google Scholar
  33. Lal, B. B. (2003). Excavations at Kalibangan, the early Harappans, 1960–1969, Archaeological survey of India.Google Scholar
  34. Li, X. (2013). New progress in the Holocene climate and agriculture research in China. Science China Earth Sciences, 56, 2027–2036.CrossRefGoogle Scholar
  35. Lovelock, J. E. (1971). Atmospheric fluorine compounds as indicators of air movements. Nature, 230, 379.CrossRefGoogle Scholar
  36. Lu, H., Zhang, J., LIU, K.-B., Wu, N., Li, Y., Zhou, K., Ye, M., Zhang, T., Zhang, H., & Yang, X. (2009). Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences, 106, 7367–7372.CrossRefGoogle Scholar
  37. Lu, Y., Waldmann, N., Nadel, D., & Marco, S. (2017). Increased sedimentation following the Neolithic revolution in the southern Levant. Global and Planetary Change, 152, 199–208.CrossRefGoogle Scholar
  38. Macoun, J. (1922). Autobiography of John Macoun, MA: Canadian explorer and naturalist, assistant director and naturalist to the geological survey of Canada (pp. 1831–1920).Google Scholar
  39. Madella, M., & Fuller, D. Q. (2006). Palaeoecology and the Harappan civilisation of South Asia: A reconsideration. Quaternary Science Reviews, 25, 1283–1301.CrossRefGoogle Scholar
  40. Maestri, N. (2018). Chultun - Ancient maya storage systems [Online]. Available: [Accessed 20 May 2018].
  41. Mani, B. (2008). Kashmir Neolithic and early Harappan: A linkage. Pragdhara, 18, 229–247.Google Scholar
  42. Mark, J. J. (2017). Ancient Egyptian agriculture. Ancient history Encyclopedia. [Online]. Available: [Accessed 23 May 2018].
  43. Marshall, M. (2012). Climate change: The great civilization destroyer. New Scientist, 215, 32–36.CrossRefGoogle Scholar
  44. Moore, A. M. T., & Hillman, C. G. (1992). The Pleistocene to Holocene transition and human economy in Southwest Asia: The impact of Younger Dryas. American Antiquity, 57(3), 482–494.CrossRefGoogle Scholar
  45. NDMC. (2018). The Dust Bowl [Online]. Available: [Accessed 27 May 2018].
  46. Neumann, J. (1991). Climate of the Black Sea region around 0 CE. Climatic Change, 18, 453–465.CrossRefGoogle Scholar
  47. O’connell, M., Ghilardi, B., & Morrison, L. (2014). A 7000-year record of environmental change, including early farming impact, based on lake-sediment geochemistry and pollen data from county Sligo, western Ireland. Quaternary Research, 81, 35–49.CrossRefGoogle Scholar
  48. Organ, C., Nunn, C. L., Machanda, Z., & Wrangham, R. W. (2011). Phylogenetic rate shifts in feeding time during the evolution of homo. Proceedings of the National Academy of Sciences of the United States of America, 108, 14555–14559.CrossRefGoogle Scholar
  49. Pandey, D. N., Gupta, A. K., & Anderson, D. M. (2003). Rainwater harvesting as an adaptation to climate change. Current Science, 85, 46–59.Google Scholar
  50. Partin, J., Quinn, T., Shen, C.-C., Okumura, Y., Cardenas, M., Siringan, F., Banner, J., Lin, K., Hu, H.-M., & Taylor, F. (2015). Gradual onset and recovery of the younger Dryas abrupt climate event in the tropics. Nature Communications, 6, 8061.CrossRefGoogle Scholar
  51. Peterson, L. C., & Haug, G. H. (2005). Climate and the collapse of Maya civilization: A series of multi-year droughts helped to doom an ancient culture. American Scientist, 93, 322–329.CrossRefGoogle Scholar
  52. Popkin, G. (2017). Massive El Niño sent greenhouse-gas emissions soaring. Nature, 548, 269.CrossRefGoogle Scholar
  53. Possehl, G. L. (2002). The Indus civilization: A contemporary perspective. Rowman Altamira.Google Scholar
  54. Prentice, R. (2009). Cultural responses to climate change in the Holocene. Anthós, 1, 3.Google Scholar
  55. Purugganan, M. D., & Fuller, D. Q. (2009). The nature of selection during plant domestication. Nature, 457, 843.CrossRefGoogle Scholar
  56. Ramanathan, V., Cicerone, R. J., Singh, H. B., & Kiehl, J. T. (1985). Trace gas trends and their potential role in climate change. Journal of Geophysical Research, 90, 5547–5566.CrossRefGoogle Scholar
  57. Rao, L., Sahu, N. B., Sahu, P., Shastry, U., & Diwan, S. (2005). New light on the excavation of Harappan settlement at Bhirrana. Puratattva, 35, 67–75.Google Scholar
  58. Reed, C. A. (1977). Origins of agriculture. Berlin/Boston: Walter de Gruyter.CrossRefGoogle Scholar
  59. Richerson, P. J., Boyd, R., & Bettinger, R. L. (2001). Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. American Antiquity, 66, 387–411.CrossRefGoogle Scholar
  60. Riehl, S. (2008). Climate and agriculture in the ancient near east: A synthesis of the archaeobotanical and stable carbon isotope evidence. Vegetation History and Archaeobotany, 17, 43.CrossRefGoogle Scholar
  61. Sarkar, A., Mukherjee, A. D., Bera, M., Das, B., Juyal, N., Morthekai, P., Deshpande, R., Shinde, V., & Rao, L. (2016). Oxygen isotope in archaeological bioapatites from India: Implications to climate change and decline of bronze age Harappan civilization. Scientific Reports, 6, 26555.CrossRefGoogle Scholar
  62. Shackleton, N. (1986). Paleogene stable isotope events. Palaeogeography, Palaeoclimatology, Palaeoecology, 57, 91–102.CrossRefGoogle Scholar
  63. Shao, X., Xu, Y., YIN, Z.-Y., LIANG, E., Zhu, H., & Wang, S. (2010). Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan plateau. Quaternary Science Reviews, 29, 2111–2122.CrossRefGoogle Scholar
  64. Sinclair, T. R., & Sinclair, C. J. (2010). Bread, beer and the seeds of change: agriculture’s imprint on world history. Cabi, Wallingford.Google Scholar
  65. Singh, G., Wasson, R., & Agrawal, D. (1990). Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Review of Palaeobotany and Palynology, 64, 351–358.CrossRefGoogle Scholar
  66. Smyth, J., & Evershed, R. P. (2016). Milking the megafauna: Using organic residue analysis to understand early farming practice. Environmental Archaeology, 21, 214–229.CrossRefGoogle Scholar
  67. Sorenson, R. P. (2011). Eunice Foote’s pioneering research on CO2 and climate warming. Search and Discovery.Google Scholar
  68. Stahle, D. W., Cleaveland, M. K., Blanton, D. B., Therrell, M. D., & Gay, D. A. (1998). The lost colony and Jamestown droughts. Science, 280, 564–567.CrossRefGoogle Scholar
  69. Su, Y., Liu, L., Fang, X., & Ma, Y. (2016). The relationship between climate change and wars waged between nomadic and farming groups from the western Han dynasty to the tang dynasty period. Climate of the Past, 12, 137–150.CrossRefGoogle Scholar
  70. Taylor, K. J., Potito, A. P., Beilman, D. W., Ghilardi, B., & O’connell, M. (2017). Impact of early prehistoric farming on chironomid communities in Northwest Ireland. Journal of Paleolimnology, 57, 227–244.CrossRefGoogle Scholar
  71. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., & Liu, K.-B. (1995). Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science, 269, 46–50.CrossRefGoogle Scholar
  72. Thompson, L. G., Tandong, Y., Davis, M. E., Mosley-Thompson, E., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., & Zagorodnov, V. S. (2006). Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan plateau. Annals of Glaciology, 43, 61–69.CrossRefGoogle Scholar
  73. Wang, S., Lü, H., Liu, J., & Negendank, J. F. (2007). The early Holocene optimum inferred from a high-resolution pollen record of Huguangyan Maar Lake in southern China. Chinese Science Bulletin, 52, 2829–2836.CrossRefGoogle Scholar
  74. West, J. B. (2014). Henry Cavendish (1731–1810): Hydrogen, carbon dioxide, water, and weighing the world. American Journal of Physiology-Lung Cellular and Molecular Physiology, 307, L1–L6.CrossRefGoogle Scholar
  75. Whitehouse, N. J., Schulting, R. J., Mcclatchie, M., Barratt, P., Mclaughlin, T. R., Bogaard, A., Colledge, S., Marchant, R., Gaffrey, J., & Bunting, M. J. (2014). Neolithic agriculture on the European western frontier: The boom and bust of early farming in Ireland. Journal of Archaeological Science, 51, 181–205.CrossRefGoogle Scholar
  76. Wolfe, S., Hugenholtz, C., & Lian, O. B. (2013). Palliser’s triangle: Reconstructing the ‘central desert’of the southwestern Canadian prairies during the late 1850s. The Holocene, 23, 699–707.CrossRefGoogle Scholar
  77. Wrangham, R. (2009). Catching fire: How cooking made us human. New York: Basic Books.Google Scholar
  78. Wright, G. N. (1977). The Yorkshire dales. Newton Abbot: David & Charles Publishers.Google Scholar
  79. Wu, L., Li, F., Zhu, C., Li, L., & Li, B. (2012). Holocene environmental change and archaeology, Yangtze River valley, China: Review and prospects. Geoscience Frontiers, 3, 875–892.CrossRefGoogle Scholar
  80. Yancheva, G., Nowaczyk, N., Mingram, J., Dulski, P., Schettler, G., Negendank, J., Liu, J., Sigman, D., Peterson, L., & Haug, G. (2007). 2007: Influence of the intertropical convergence zone on the east Asian monsoon. Nature, 445, 74–77.CrossRefGoogle Scholar
  81. Yasuda, Y., Kitagawa, H., & Nakagawa, T. (2000). The earliest record of major anthropogenic deforestation in the Ghab Valley, Northwest Syria: A palynological study. Quaternary International, 73, 127–136.CrossRefGoogle Scholar
  82. You, H., & Liu, J. (2012). High-resolution climate evolution derived from the sediment records of Erlongwan maar Lake since 14 ka BP. Chinese Science Bulletin, 57, 3610–3616.CrossRefGoogle Scholar
  83. Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., Harrison, S. P., Huang, C., ke, M., & Kong, Z. (2000). Palaeovegetation of China: A pollen data-based synthesis for the mid-Holocene and last glacial maximum. Journal of Biogeography, 27, 635–664.CrossRefGoogle Scholar
  84. Zhang, Q., Chen, J., & Becker, S. (2007). Flood/drought change of last millennium in the Yangtze Delta and its possible connections with Tibetan climatic changes. Global and Planetary Change, 57, 213–221.CrossRefGoogle Scholar
  85. Zheng, J., Wang, W.-C., Ge, Q., Man, Z., & Zhang, P. (2006). Precipitation variability and extreme events in eastern China during the past 1500 years. Terrestrial, Atmospheric and Oceanic Sciences, 17, 579–592.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Adaptive Cropping System LaboratoryUSDA, ARSBeltsvilleUSA

Personalised recommendations