Advertisement

Processing of Green Composites

Chapter
Part of the Textile Science and Clothing Technology book series (TSCT)

Abstract

The research on environmentally friendly materials has been regressively carried out to protect the environment. Natural fiber reinforced green composites have created enthusiasm for an extensive variety of research exercises. Many researchers are attempting to create different products by utilizing natural fibers as reinforcing agents. It is the main reason that this chapter is outfitted through reviewing the published results. This chapter draws out the issues related with processing of natural fibers and their green composite has been tended to. The types of fibers utilized as a part of composites, surface modifications and processing techniques of these green composites have been examined in detail. From the literature, it is presumed that the natural fibers are the potential replacement option for unadulterated manufactured fibers and the utilizations of these fiber composites will increase in future.

Keywords

Natural fibers Energy efficient Bio-degradability Surface modifications Processing methods 

References

  1. 1.
    Ishak MR, Leman Z, Sapuan SM et al (2013) Chemical composition and FTIR spectra of sugar palm (Arenga pinnata) fibers obtained from different heights. J Nat Fiber 10:83–97CrossRefGoogle Scholar
  2. 2.
    Meghdad KM, Mortazavi SM (2016) Physical and chemical properties of natural fibers extracted from Typha Australis leaves. J Nat Fiber 13:353–361CrossRefGoogle Scholar
  3. 3.
    Faruk O, Bledzki AK, Fink HP et al (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596CrossRefGoogle Scholar
  4. 4.
    John MJ, Thomas S (2008) Biofibers and biocomposites. Carbohyd Polym 71(3):343–364CrossRefGoogle Scholar
  5. 5.
    Madhu P, Sanjay MR, Senthamaraikannan P et al (2017) A review on synthesis and characterization of commercially available natural fibers: part II. J Nat Fiber.  https://doi.org/10.1080/15440478.2017.1379045CrossRefGoogle Scholar
  6. 6.
    La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A 42(6):579–588CrossRefGoogle Scholar
  7. 7.
    Gaceva GB, Avella M, Malinconico M et al (2008) Natural fiber eco-composites. Polym Compos 28(1):98–107CrossRefGoogle Scholar
  8. 8.
    Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24CrossRefGoogle Scholar
  9. 9.
    Ramesh M, Palanikumar K, Reddy KH (2013) Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites. Compos Part B-Eng 48:1–9CrossRefGoogle Scholar
  10. 10.
    Akin DE, Foulk JA, Dodd RB et al (2006) Enzyme-retted flax using different formulations and processed through the USDA flax fiber pilot plant. J Nat Fiber 3:55–68CrossRefGoogle Scholar
  11. 11.
    Biagiotti J, Puglia D, Kenny JM (2004) A review on natural fiber-based composites-part I. J Nat Fiber 1(2):37–68CrossRefGoogle Scholar
  12. 12.
    Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24CrossRefGoogle Scholar
  13. 13.
    Ardanuy M, Claramunt J, Filho RDT (2015) Cellulosic fiber reinforced cement based composites: a review of recent research. Construct Build Mater 79:115–128CrossRefGoogle Scholar
  14. 14.
    Faruk O, Bledzki AK, Fink HP et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26CrossRefGoogle Scholar
  15. 15.
    Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Compos Part A 77:1–25CrossRefGoogle Scholar
  16. 16.
    Nirmal U, Hashim J, Ahmad MMHM (2015) A review on tribological performance of natural fiber polymeric composites. Tribol Int 83:77–104CrossRefGoogle Scholar
  17. 17.
    Kamath SS, Sampathkumar D, Bennehalli B (2017) A review on natural areca fibre reinforced polymer composite materials. Ciencia Tecnol dos Mater 29:106–128Google Scholar
  18. 18.
    Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55:107–162CrossRefGoogle Scholar
  19. 19.
    Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fiber based bio-materials: a review on processing and properties. Prog Mater Sci 78–79:1–92CrossRefGoogle Scholar
  20. 20.
    Sathishkumar TP, Naveen J, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites—a review. J Reinf Plast Compos 33(5):454–471CrossRefGoogle Scholar
  21. 21.
    Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd Polym 109:102–117CrossRefGoogle Scholar
  22. 22.
    Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber based polymer composites. Int J Polym Anal Charact 19(3):256–271CrossRefGoogle Scholar
  23. 23.
    Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromol 37:7683–7687CrossRefGoogle Scholar
  24. 24.
    Huber T, Pang S, Staiger MP (2012) All-cellulose composite laminates. Compos Part A 43:1738–1745CrossRefGoogle Scholar
  25. 25.
    Kalka S, Huber T, Steinberg J et al (2014) Biodegradability of all-cellulose composite laminates. Compos Part A 59:37–44CrossRefGoogle Scholar
  26. 26.
    Ghavami K, Filho RDT, Barbosa NP (1999) Behavior of composite soil reinforced with natural fibers. Cem Concr Compos 21(1):39–48CrossRefGoogle Scholar
  27. 27.
    Hyness NRJ, Vignesh NJ, Senthamaraikannan P et al (2017) Characterization of new natural cellulosic fiber from Heteropogon contortus plant. J Nat Fiber.  https://doi.org/10.1080/15440478.2017.1321516CrossRefGoogle Scholar
  28. 28.
    Manimaran P, Senthamaraikannan P, Murugananthan K et al (2017) Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. J Nat Fiber.  https://doi.org/10.1080/15440478.2017.1302388CrossRefGoogle Scholar
  29. 29.
    Reis J (2006) Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Construct Build Mater 20(9):673–678CrossRefGoogle Scholar
  30. 30.
    Silva FA, Filho RDT, Fairbairn EMR (2010) Physical and mechanical properties of durable sisal fiber cement composites. Construct Build Mater 24(5):777–785CrossRefGoogle Scholar
  31. 31.
    Zhu HX, Yan LB, Zhang R et al (2012) Size-dependent and tunable elastic properties of hierarchical honeycombs with regular square and equilateral triangular cells. Acta Mater 60(12):4927–4939CrossRefGoogle Scholar
  32. 32.
    Arpitha G, Sanjay MR, Senthamaraikannan P et al (2017) Hybridization effect of sisal/glass/epoxy/filler based woven fabric reinforced composites. Exp Tech.  https://doi.org/10.1007/s40799-017-0203-4CrossRefGoogle Scholar
  33. 33.
    Coutts RSP (2005) A review of Australian research into natural fiber cement composites. Cem Concr Compos 27:518–526CrossRefGoogle Scholar
  34. 34.
    Kim NK, Lin RJT, Bhattacharyya D (2017) Flammability and mechanical behaviour of polypropylene composites filled with cellulose and protein based fibers: a comparative study. Compos Part A 100:215–226CrossRefGoogle Scholar
  35. 35.
    Ku H, Wang H, Pattarachaiyakoop N et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42:856–873CrossRefGoogle Scholar
  36. 36.
    Lu TJ, Jiang M, Jiang ZG et al (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B Eng 51:28–34CrossRefGoogle Scholar
  37. 37.
    Maheshwaran MV, Hyness NRJ, Senthamaraikannan P et al (2017) Characterization of natural cellulosic fiber from Epipremnum aureum stem. J Nat Fiber.  https://doi.org/10.1080/15440478.2017.1364205CrossRefGoogle Scholar
  38. 38.
    Ramesh M, Palanikumar K, Reddy KH (2017) Plant fiber based bio-composites: sustainable and renewable green materials. Renew Sustain Ener Rev 79:558–584CrossRefGoogle Scholar
  39. 39.
    Sanjay MR, Yogesha B (2017) Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: effect of laminate stacking sequences. J Ind Text.  https://doi.org/10.1177/1528083717710713CrossRefGoogle Scholar
  40. 40.
    Tonoli GHD, Belgacem MN, Siqueira G et al (2013) Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibers. Cem Concr Compos 37:68–75CrossRefGoogle Scholar
  41. 41.
    Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composite from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26CrossRefGoogle Scholar
  42. 42.
    Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29CrossRefGoogle Scholar
  43. 43.
    Ramesh M, Palanikumar K, Reddy KH (2014) Impact behaviour analysis of sisal/jute and glass fiber reinforced hybrid composites. Adv Mater Res 984–985:266–272CrossRefGoogle Scholar
  44. 44.
    Obi Reddy C, Umamaheswari E, Muzenda M et al (2016) Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibers. J Nat Fiber 13:54–64CrossRefGoogle Scholar
  45. 45.
    Samson R, Tomkova B (2015) Morphological, thermal, and mechanical characterization of Sansevieria trifasciata fibers. J Nat Fiber 12:201–210CrossRefGoogle Scholar
  46. 46.
    Kumar RN, Hynes RJ, Senthamaraikannan P et al (2017) Physicochemical and thermal properties of Ceiba pentandra bark fiber. J Nat Fiber.  https://doi.org/10.1080/15440478.2017.1369208CrossRefGoogle Scholar
  47. 47.
    Akil HM, Omar MF, Mazuki AAM et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121CrossRefGoogle Scholar
  48. 48.
    Li Y, Mai YW, Ye L (2000) Sisal fiber and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055CrossRefGoogle Scholar
  49. 49.
    Lobovikov M, Paudel S, Piazza M et al (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. FAO, Rome, pp 1–37Google Scholar
  50. 50.
    Mohanty AK, Misra M (1995) Studies on jute composites: a literature review. Polym Plast Technol Eng 34(5):729–792CrossRefGoogle Scholar
  51. 51.
    Shahzad A (2012) Hemp fiber and its composites: a review. J Compos Mater 46:973–986CrossRefGoogle Scholar
  52. 52.
    Staiger MP and Tucker (2008) Natural fiber composites in structural applications. In: Properties and performance of natural-fiber composites. Woodhead Publishing, UK, pp 269–300Google Scholar
  53. 53.
    Yan L, Chouw N, Jayaraman K (2014) Effect of triggering and polyurethane foam filler on axial crushing of natural flax/epoxy composite tubes. Mater Des 56:528–541CrossRefGoogle Scholar
  54. 54.
    Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibers, their fiber fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos B 92:94–132CrossRefGoogle Scholar
  55. 55.
    Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429CrossRefGoogle Scholar
  56. 56.
    Satyanarayana KG, Sukumaran K, Mukherjee PS et al (1990) Natural fiber–polymer composite. Cement Compos 12:117–136CrossRefGoogle Scholar
  57. 57.
    Munawar SS, Umemura K, Kawai S (2007) Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J Wood Sci 53:108–113CrossRefGoogle Scholar
  58. 58.
    John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207CrossRefGoogle Scholar
  59. 59.
    Mylsamy K, Rajendran I (2010) Investigation on physio-chemical and mechanical properties of raw and Alkali-treated agave Americana fiber. J Reinf Plast Compos 29:2925–2935CrossRefGoogle Scholar
  60. 60.
    Ali M (2009) Natural fibers as construction materials. Non-conventional materials and technologies. In: Proceedings of the 11th international conference on non-conventional materials and technologies, Bath, UKGoogle Scholar
  61. 61.
    Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: vakka, date and bamboo. Compos Struct 77:288–295CrossRefGoogle Scholar
  62. 62.
    Joseph K, Toledo RD, James B et al (1999) A review on sisal fiber reinforced polymer composites. Revista Brasileira de Engenharia Agricola e Ambiental 3:367–379CrossRefGoogle Scholar
  63. 63.
    Obi Reddy K, Sivamohan Reddy G, Uma Maheswari C et al (2010) Structural characterization of coconut tree leaf sheath fiber reinforcement. J Forestry Res 21:53–58CrossRefGoogle Scholar
  64. 64.
    Monteiro SN, Aquino RCMP, Lopes FPD (2008) Performance of curaua fibers in pullout tests. J Mater Sci 43:489–493CrossRefGoogle Scholar
  65. 65.
    Rao KMM, Prasad AVR, Babu MNVR et al (2007) Tensile properties of elephant grass fiber reinforced polyester composites. J Mater Sci 42:3266–3272CrossRefGoogle Scholar
  66. 66.
    Beckwith SW (2008) Natural fibers: nature providing technology for composites. SAMPE J 44:64–65Google Scholar
  67. 67.
    Reddy GV, Naidu SV, Shobharani T (2009) A study on hardness and flexural properties of kapok/sisal composites. J Reinf Plast Compos 28:2035–2044CrossRefGoogle Scholar
  68. 68.
    De Rosa IM, Kenny JM, Mohd M et al (2011) Effect of chemical treatments on the mechanical and thermal behavior of okra (Abelmoschus esculentus) fibers. Compos Sci Technol 71:246–254CrossRefGoogle Scholar
  69. 69.
    Venkateshwaran N, Elayaperumal A (2010) Banana fiber reinforced polymer composites—a review. J Reinf Plast Compos 29:2387–2396CrossRefGoogle Scholar
  70. 70.
    De Rosa IM, Santulli C, Sarasini F (2010) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater Des 31:2397–2405CrossRefGoogle Scholar
  71. 71.
    Sreenivasan VS, Somasundaram S, Ravindran D et al (2011) Microstructural, physico-chemical and mechanical characterization of Sansevieria cylindrica fibers—an exploratory investigation. Mater Des 32:453–461CrossRefGoogle Scholar
  72. 72.
    Sathishkumar TP, Navaneethakrishnan P, Shankar S (2012) Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites. Compos Sci Technol 72:1183–1190CrossRefGoogle Scholar
  73. 73.
    Sathishkumar TP, Navaneethakrishnan P, Shankar S et al Mechanical properties of randomly oriented snake grass fiber with banana and coir fiber-reinforced hybrid composites. J Compos Mater.  https://doi.org/10.1177/0021998312454903
  74. 74.
    Davies P, Morvan C, Sire O et al (2007) Structure and properties of fibers from sea-grass (Zostera marina). J Mater Sci 42:4850–4857CrossRefGoogle Scholar
  75. 75.
    Le Digabel F, Averous L (2006) Effect of lignin content on the properties of lignocellulose-based biocomposites. Carbohyd Polym 66:537–545CrossRefGoogle Scholar
  76. 76.
    Mohanty AK, Misra M and Drzal LT (2005) Natural fibers, biopolymers and biocomposites. CRC Press, pp 1–36Google Scholar
  77. 77.
    Sanjay MR, Arpitha GR, Naik LL et al (2016) Applications of natural fibres and its composites: an overview. Nat Resour 7:108–114Google Scholar
  78. 78.
    Kadolph SJ, Langford AL (2001) Textiles, 9th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  79. 79.
    Bongarde US, Shinde VD (2014) Review on natural fibre reinforcement polymer composites. Int J Eng Sci Innov Technol 3(2):431–436Google Scholar
  80. 80.
    Mussig J (2010) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, New JerseyCrossRefGoogle Scholar
  81. 81.
    Kovacevic Z, Vukusic SB, Zimniewska M (2012) Comparison of Spanish broom (Spartium junceum L.) and flax (Linum usitatissimum) fibre. Text Res J 82(17):1786–1798CrossRefGoogle Scholar
  82. 82.
    de Albuquerque AC, Joseph K, de Carvalho LH et al (2000) Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Compos Sci Technol 60:833–844CrossRefGoogle Scholar
  83. 83.
    Ramesh M, Deepa C, Aswin US et al (2017) Effect of alkalization on mechanical and moisture absorption properties of Azadirachta indica (Neem Tree) fiber reinforced green composites. Trans Indian Inst Met 70(1):187–199CrossRefGoogle Scholar
  84. 84.
    Barreto ACH, Rosa DS, Fechine PBA et al (2011) Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos Part A 42:492–500CrossRefGoogle Scholar
  85. 85.
    Campos A, Marconcini JM, Franchetti SMM et al (2012) The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polym Degrad Stab 97(10):1948–1955CrossRefGoogle Scholar
  86. 86.
    Kabir MM, Wang H, Aravinthan T et al (2011) Effects of natural fiber surface on composite properties: a review. eddBE Proc Ener Environ Sustain, pp 94–99Google Scholar
  87. 87.
    Milanese, Ceclia A, Cioffi H et al (2011) Mechanical behavior of natural fiber composites. Proc Eng 10:2022–2027Google Scholar
  88. 88.
    Sulawan K, Wimonlak S, Kasama J (2010) Effect of heat treated sisal fiber on physical properties of polypropylene composites. Adv Mater Res 123–125:1123–1126Google Scholar
  89. 89.
    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRefGoogle Scholar
  90. 90.
    Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interf 8(5):313–343CrossRefGoogle Scholar
  91. 91.
    Scarponi C, Pizzinelli CS (2009) Interface and mechanical properties of natural fibers reinforced composites: A review. Int J Mater Prod Technol 36:278–303CrossRefGoogle Scholar
  92. 92.
    Almeida AEFS, Tonoli GHD, Santos SF et al (2013) Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age. Cem Concr Compos 42:49–58CrossRefGoogle Scholar
  93. 93.
    Filho RDT, Silva FA, Fairbairn EMR et al (2009) Durability of compression molded sisal fiber reinforced mortar laminates. Construct Build Mater 23(6):2409–2420CrossRefGoogle Scholar
  94. 94.
    Wei J, Meyer C (2015) Degradation mechanisms of natural fiber in the matrix of cement composites. Cem Concr Res 73:1–16CrossRefGoogle Scholar
  95. 95.
    Bhoopathi R, Deepa C, Sasikala G et al (2015) Experimental investigation on mechanical properties of hemp-banana-glass fiber reinforced composites. Appl Mech Mater 766–767:167–172CrossRefGoogle Scholar
  96. 96.
    Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fiber-reinforced polyethylene composites. Polymer 37:5139–5149CrossRefGoogle Scholar
  97. 97.
    Joseph P, Rabello MS, Mattoso LH et al (2002) Environmental effects on the degradation behaviour of sisal fiber reinforced polypropylene composites. Compos Sci Technol 62:1357–1372CrossRefGoogle Scholar
  98. 98.
    Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRefGoogle Scholar
  99. 99.
    Ramesh M, Elvin RP, Palanikumar K et al (2011) Surface roughness optimization of machining parameters in machining of composite materials. Int J Appl Res Mech Eng 1(1):26–32Google Scholar
  100. 100.
    Gon D, Das K, Paul P et al (2012) Jute composites as wood substitute. Int J Tex Sci 1(6):84–93CrossRefGoogle Scholar
  101. 101.
    Mohanty AK, Khan MA, Hinrichsen G (2000) Effect of chemical modification on the performance of biodegradable jute yarn biopol composites. J Mater Sci 35:2589–2595CrossRefGoogle Scholar
  102. 102.
    Mohanty AK, Khan MA, Hinrichsen G (2000) Influence of chemical surface modification on the properties of biodegradable jute fabrics-polyester amide composites. Compos Part A 31(2):143–150CrossRefGoogle Scholar
  103. 103.
    Sanadi AR, Caulfield DF (2000) Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent. Compos Interf 7(1):31–43CrossRefGoogle Scholar
  104. 104.
    Nunna S, Chandra PR, Shrivastava S et al (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31(11):759–769CrossRefGoogle Scholar
  105. 105.
    Ramesh P, Prasad BD, Narayana KL (2018) Characterization of kenaf fiber and its composites: a review. J Reinf Plast Compos.  https://doi.org/10.1177/0731684418760206CrossRefGoogle Scholar
  106. 106.
    Brahmakumar M, Pavithran C, Pillai RM (2005) Coconut fiber reinforced polyethylene composites: effect of natural waxy surface layer of the fiber on fiber/matrix interfacial bonding and strength of composites. Compos Sci Technol 65:563–569CrossRefGoogle Scholar
  107. 107.
    Yousif BF, Ku H (2012) Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Mater Des 36:847–853CrossRefGoogle Scholar
  108. 108.
    Yousif BF, Tayeb NE (2008) Adhesive wear performance of T-OPRP and UT-OPRP composites. Tribol Lett 32(3):199–208CrossRefGoogle Scholar
  109. 109.
    Yousif BF (2009) Frictional and wear performance of polyester composites based on coir fibers. In: Proceedings of the institution of mechanical engineers, Part J. J Eng Tribol 223:51–59Google Scholar
  110. 110.
    Hong CK, Hwang I, Kim N et al (2008) Mechanical properties of silanized jute-polypropylene composites. J Ind Eng Chem 14:71–76CrossRefGoogle Scholar
  111. 111.
    John MJ, Francis B, Varughese KT et al (2008) Effect of chemical modification on properties of hybrid fiber biocomposites. Compos Part A 39:352–363CrossRefGoogle Scholar
  112. 112.
    Taib RM, Ramarad S, Ishak ZAM et al (2009) Effect of immersion time in water on the tensile properties of acetylated steam-exploded Acacia mangium fibers filled polyethylene composites. J Thermoplast Compos Mater 22:83–98CrossRefGoogle Scholar
  113. 113.
    Khalil HPSA, Tehrani MA, Davoudpour Y et al (2013) Natural fiber reinforced poly(vinyl chloride) composites: a review. J Reinf Plast Compos 32(5):330–356CrossRefGoogle Scholar
  114. 114.
    Maslinda AB, Majid MSA, Ridzuan MJM et al (2017) Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fiber reinforced epoxy composites. Compos Struct 167:227–237CrossRefGoogle Scholar
  115. 115.
    Ramesh M, Palanikumar K, Reddy KH (2013) Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites. Proc Eng 51:745–750CrossRefGoogle Scholar
  116. 116.
    Ghani MAA, Salleh Z, Hyie KM et al (2012) Mechanical properties of kenaf/fiber glass polyester hybrid composite. Proc Eng 41:1654–1659CrossRefGoogle Scholar
  117. 117.
    Bernard M, Khalina A, Ali A et al (2011) The effect of processing parameters on the mechanical properties of kenaf fiber plastic composite. Mater Des 32:1039–1043CrossRefGoogle Scholar
  118. 118.
    Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali-silane treatment on the tensile and flexural properties of short fiber non-woven kenaf reinforced polypropylene composites. Compos Part A 43:1431–1440CrossRefGoogle Scholar
  119. 119.
    Lee BH, Kim HS, Lee S et al (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579CrossRefGoogle Scholar
  120. 120.
    Atiqah A, Maleque MA, Jawaid M et al (2014) Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos Part B 56:68–73CrossRefGoogle Scholar
  121. 121.
    Kwon HJ, Sunthornvarabhas J, Park JW et al (2014) Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Compos Part B 56:232–237CrossRefGoogle Scholar
  122. 122.
    Shukor F, Hassan A, Islam MS et al (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA bio-composites. Mater Des 54:425–429CrossRefGoogle Scholar
  123. 123.
    Velde KV, Kiekens P (2001) Thermoplastic pultrusion of natural fiber reinforced composites. Compos Struct 54:355–360CrossRefGoogle Scholar
  124. 124.
    Memona A, Nakai A (2013) Mechanical properties of jute spun yarn/PLA tubular braided composite by pultrusion molding. Ener Proc 34:818–829CrossRefGoogle Scholar
  125. 125.
    Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fiber-polypropylene composites. Polym 41:1589–1596CrossRefGoogle Scholar
  126. 126.
    Angelov I, Wiedmer S, Evstatiev M et al (2007) Pultrusion of a flax/polypropylene yarn. Compos Part A-Appl Sci Manuf 38(5):1431–1438CrossRefGoogle Scholar
  127. 127.
    Arbelaiz A, Fernandez B, Ramos JA et al (2006) Thermal and crystallization studies of short flax fiber reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121CrossRefGoogle Scholar
  128. 128.
    Arib RMN, Sapuan SM, Ahmad MMHM et al (2006) Mechanical properties of pineapple leaf fiber reinforced polypropylene composites. Mater Des 27:391–396CrossRefGoogle Scholar
  129. 129.
    Doan TTL, Brodowsky H, Mader E (2001) Jute fiber/polypropylene composites II: Thermal, hydrothermal and dynamic mechanical behavior. Composi Sci Technol 67:2707–2714CrossRefGoogle Scholar
  130. 130.
    Fung KL, Xing XS, Li RKY et al (2003) An investigation on the processing of sisal fiber reinforced polypropylene composites. Compos Sci Technol 63:1255–1258CrossRefGoogle Scholar
  131. 131.
    Khondker OA, Ishiaku US, Nakai A et al (2006) A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos Part A-Appl Sci 37(12):2274–2284CrossRefGoogle Scholar
  132. 132.
    Lee SH, Wang S, George P et al (2007) Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nano-indentation and finite element analysis. Compos Part A-Appl Sci Manuf 38(6):1517–1524CrossRefGoogle Scholar
  133. 133.
    Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fiber composites: an evaluation of the influence of porosity. Compos Sci Technol 63:1265–1272CrossRefGoogle Scholar
  134. 134.
    Malkapuram R, Kumaran V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189CrossRefGoogle Scholar
  135. 135.
    Palanikumar K, Ramesh M, Reddy KH (2016) Experimental investigation on the mechanical properties of green hybrid sisal and glass fiber reinforced polymer composites. J Nat Fiber 13(3):321–331CrossRefGoogle Scholar
  136. 136.
    Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fiber composites and their mechanical performance. Compos A 83:98–112CrossRefGoogle Scholar
  137. 137.
    Rana AK, Mandala A, Bandyopadhyay S (2003) Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol 63:801–806CrossRefGoogle Scholar
  138. 138.
    Thwe MM, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63:375–387CrossRefGoogle Scholar
  139. 139.
    Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fiber reinforced plastics. Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  140. 140.
    Zampaloni M, Pourboghrat F, Yankovich SA et al (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A 38(6):1569–1580CrossRefGoogle Scholar
  141. 141.
    Peng X, Fan M, Hartley J et al (2011) Properties of natural fiber composites made by pultrusion process. J Compos Mater 46(2):237–246CrossRefGoogle Scholar
  142. 142.
    Bachtiar D, Sapuan SM, Hamdan MM (2008) The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater Des 29:1285–1290CrossRefGoogle Scholar
  143. 143.
    Bachtiar D, Sapuan SM, Hamdan MM (2009) The influence of alkaline surface fibre treatment on the impact properties of sugar palm fibre-reinforced epoxy composites. Polym Plast Technol Eng 48:379–383CrossRefGoogle Scholar
  144. 144.
    Ishak MR, Leman Z, Sapuan SM et al (2009) The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. Int J Mech Mater Eng 4:316–320Google Scholar
  145. 145.
    Leman Z, Sapuan SM, Azwan M et al (2008) The effect of environmental treatments on fiber surface properties and tensile strength of sugar palm fiber-reinforced epoxy composites. Polym Plast Technol Eng 47:606–612CrossRefGoogle Scholar
  146. 146.
    Ticoalu A, Aravinthan T, Cardona F (2010) Experimental investigation into gomuti fibres/polyester composites. In: Fragomeni S, Venkatesan S, Lam NTK and Setunge S (eds) 21st Australasian conference on the mechanics of structures and materials, Melbourne, Australia. The Netherlands: CRC Press/Balkema, 7–10 Dec 2010, pp. 451–456Google Scholar
  147. 147.
    Leman Z, Sapuan SM, Saifol AM et al (2008) Moisture absorption behavior of sugar palm fiber reinforced epoxy composites. Mater Des 29:1666–1670CrossRefGoogle Scholar
  148. 148.
    Sahari J, Sapuan SM, Ismarrubie ZN et al (2011) Comparative study of physical properties based on different parts of sugar palm fibre reinforced unsaturated polyester composites. Key Eng Mater 471–472:455–460CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKIT—Kalaignarkarunanidhi Institute of TechnologyCoimbatoreIndia
  2. 2.Department of Computer Science and EngineeringKIT—Kalaignarkarunanidhi Institute of TechnologyCoimbatoreIndia

Personalised recommendations