Skip to main content

Processing of Green Composites

  • Chapter
  • First Online:
Green Composites

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

The research on environmentally friendly materials has been regressively carried out to protect the environment. Natural fiber reinforced green composites have created enthusiasm for an extensive variety of research exercises. Many researchers are attempting to create different products by utilizing natural fibers as reinforcing agents. It is the main reason that this chapter is outfitted through reviewing the published results. This chapter draws out the issues related with processing of natural fibers and their green composite has been tended to. The types of fibers utilized as a part of composites, surface modifications and processing techniques of these green composites have been examined in detail. From the literature, it is presumed that the natural fibers are the potential replacement option for unadulterated manufactured fibers and the utilizations of these fiber composites will increase in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishak MR, Leman Z, Sapuan SM et al (2013) Chemical composition and FTIR spectra of sugar palm (Arenga pinnata) fibers obtained from different heights. J Nat Fiber 10:83–97

    Article  CAS  Google Scholar 

  2. Meghdad KM, Mortazavi SM (2016) Physical and chemical properties of natural fibers extracted from Typha Australis leaves. J Nat Fiber 13:353–361

    Article  CAS  Google Scholar 

  3. Faruk O, Bledzki AK, Fink HP et al (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  4. John MJ, Thomas S (2008) Biofibers and biocomposites. Carbohyd Polym 71(3):343–364

    Article  CAS  Google Scholar 

  5. Madhu P, Sanjay MR, Senthamaraikannan P et al (2017) A review on synthesis and characterization of commercially available natural fibers: part II. J Nat Fiber. https://doi.org/10.1080/15440478.2017.1379045

    Article  Google Scholar 

  6. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A 42(6):579–588

    Article  CAS  Google Scholar 

  7. Gaceva GB, Avella M, Malinconico M et al (2008) Natural fiber eco-composites. Polym Compos 28(1):98–107

    Article  CAS  Google Scholar 

  8. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24

    Article  Google Scholar 

  9. Ramesh M, Palanikumar K, Reddy KH (2013) Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites. Compos Part B-Eng 48:1–9

    Article  CAS  Google Scholar 

  10. Akin DE, Foulk JA, Dodd RB et al (2006) Enzyme-retted flax using different formulations and processed through the USDA flax fiber pilot plant. J Nat Fiber 3:55–68

    Article  CAS  Google Scholar 

  11. Biagiotti J, Puglia D, Kenny JM (2004) A review on natural fiber-based composites-part I. J Nat Fiber 1(2):37–68

    Article  CAS  Google Scholar 

  12. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24

    Article  CAS  Google Scholar 

  13. Ardanuy M, Claramunt J, Filho RDT (2015) Cellulosic fiber reinforced cement based composites: a review of recent research. Construct Build Mater 79:115–128

    Article  Google Scholar 

  14. Faruk O, Bledzki AK, Fink HP et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26

    Article  CAS  Google Scholar 

  15. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Compos Part A 77:1–25

    Article  CAS  Google Scholar 

  16. Nirmal U, Hashim J, Ahmad MMHM (2015) A review on tribological performance of natural fiber polymeric composites. Tribol Int 83:77–104

    Article  CAS  Google Scholar 

  17. Kamath SS, Sampathkumar D, Bennehalli B (2017) A review on natural areca fibre reinforced polymer composite materials. Ciencia Tecnol dos Mater 29:106–128

    Google Scholar 

  18. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55:107–162

    Article  CAS  Google Scholar 

  19. Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fiber based bio-materials: a review on processing and properties. Prog Mater Sci 78–79:1–92

    Article  CAS  Google Scholar 

  20. Sathishkumar TP, Naveen J, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites—a review. J Reinf Plast Compos 33(5):454–471

    Article  CAS  Google Scholar 

  21. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd Polym 109:102–117

    Article  CAS  Google Scholar 

  22. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber based polymer composites. Int J Polym Anal Charact 19(3):256–271

    Article  CAS  Google Scholar 

  23. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromol 37:7683–7687

    Article  CAS  Google Scholar 

  24. Huber T, Pang S, Staiger MP (2012) All-cellulose composite laminates. Compos Part A 43:1738–1745

    Article  CAS  Google Scholar 

  25. Kalka S, Huber T, Steinberg J et al (2014) Biodegradability of all-cellulose composite laminates. Compos Part A 59:37–44

    Article  CAS  Google Scholar 

  26. Ghavami K, Filho RDT, Barbosa NP (1999) Behavior of composite soil reinforced with natural fibers. Cem Concr Compos 21(1):39–48

    Article  CAS  Google Scholar 

  27. Hyness NRJ, Vignesh NJ, Senthamaraikannan P et al (2017) Characterization of new natural cellulosic fiber from Heteropogon contortus plant. J Nat Fiber. https://doi.org/10.1080/15440478.2017.1321516

    Article  Google Scholar 

  28. Manimaran P, Senthamaraikannan P, Murugananthan K et al (2017) Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. J Nat Fiber. https://doi.org/10.1080/15440478.2017.1302388

    Article  Google Scholar 

  29. Reis J (2006) Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Construct Build Mater 20(9):673–678

    Article  Google Scholar 

  30. Silva FA, Filho RDT, Fairbairn EMR (2010) Physical and mechanical properties of durable sisal fiber cement composites. Construct Build Mater 24(5):777–785

    Article  Google Scholar 

  31. Zhu HX, Yan LB, Zhang R et al (2012) Size-dependent and tunable elastic properties of hierarchical honeycombs with regular square and equilateral triangular cells. Acta Mater 60(12):4927–4939

    Article  CAS  Google Scholar 

  32. Arpitha G, Sanjay MR, Senthamaraikannan P et al (2017) Hybridization effect of sisal/glass/epoxy/filler based woven fabric reinforced composites. Exp Tech. https://doi.org/10.1007/s40799-017-0203-4

    Article  Google Scholar 

  33. Coutts RSP (2005) A review of Australian research into natural fiber cement composites. Cem Concr Compos 27:518–526

    Article  CAS  Google Scholar 

  34. Kim NK, Lin RJT, Bhattacharyya D (2017) Flammability and mechanical behaviour of polypropylene composites filled with cellulose and protein based fibers: a comparative study. Compos Part A 100:215–226

    Article  CAS  Google Scholar 

  35. Ku H, Wang H, Pattarachaiyakoop N et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42:856–873

    Article  CAS  Google Scholar 

  36. Lu TJ, Jiang M, Jiang ZG et al (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B Eng 51:28–34

    Article  CAS  Google Scholar 

  37. Maheshwaran MV, Hyness NRJ, Senthamaraikannan P et al (2017) Characterization of natural cellulosic fiber from Epipremnum aureum stem. J Nat Fiber. https://doi.org/10.1080/15440478.2017.1364205

    Article  Google Scholar 

  38. Ramesh M, Palanikumar K, Reddy KH (2017) Plant fiber based bio-composites: sustainable and renewable green materials. Renew Sustain Ener Rev 79:558–584

    Article  Google Scholar 

  39. Sanjay MR, Yogesha B (2017) Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: effect of laminate stacking sequences. J Ind Text. https://doi.org/10.1177/1528083717710713

    Article  Google Scholar 

  40. Tonoli GHD, Belgacem MN, Siqueira G et al (2013) Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibers. Cem Concr Compos 37:68–75

    Article  CAS  Google Scholar 

  41. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composite from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  42. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29

    Article  Google Scholar 

  43. Ramesh M, Palanikumar K, Reddy KH (2014) Impact behaviour analysis of sisal/jute and glass fiber reinforced hybrid composites. Adv Mater Res 984–985:266–272

    Article  Google Scholar 

  44. Obi Reddy C, Umamaheswari E, Muzenda M et al (2016) Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibers. J Nat Fiber 13:54–64

    Article  CAS  Google Scholar 

  45. Samson R, Tomkova B (2015) Morphological, thermal, and mechanical characterization of Sansevieria trifasciata fibers. J Nat Fiber 12:201–210

    Article  CAS  Google Scholar 

  46. Kumar RN, Hynes RJ, Senthamaraikannan P et al (2017) Physicochemical and thermal properties of Ceiba pentandra bark fiber. J Nat Fiber. https://doi.org/10.1080/15440478.2017.1369208

    Article  Google Scholar 

  47. Akil HM, Omar MF, Mazuki AAM et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121

    Article  CAS  Google Scholar 

  48. Li Y, Mai YW, Ye L (2000) Sisal fiber and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055

    Article  CAS  Google Scholar 

  49. Lobovikov M, Paudel S, Piazza M et al (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. FAO, Rome, pp 1–37

    Google Scholar 

  50. Mohanty AK, Misra M (1995) Studies on jute composites: a literature review. Polym Plast Technol Eng 34(5):729–792

    Article  CAS  Google Scholar 

  51. Shahzad A (2012) Hemp fiber and its composites: a review. J Compos Mater 46:973–986

    Article  CAS  Google Scholar 

  52. Staiger MP and Tucker (2008) Natural fiber composites in structural applications. In: Properties and performance of natural-fiber composites. Woodhead Publishing, UK, pp 269–300

    Google Scholar 

  53. Yan L, Chouw N, Jayaraman K (2014) Effect of triggering and polyurethane foam filler on axial crushing of natural flax/epoxy composite tubes. Mater Des 56:528–541

    Article  CAS  Google Scholar 

  54. Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibers, their fiber fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos B 92:94–132

    Article  CAS  Google Scholar 

  55. Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429

    Article  CAS  Google Scholar 

  56. Satyanarayana KG, Sukumaran K, Mukherjee PS et al (1990) Natural fiber–polymer composite. Cement Compos 12:117–136

    Article  CAS  Google Scholar 

  57. Munawar SS, Umemura K, Kawai S (2007) Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J Wood Sci 53:108–113

    Article  Google Scholar 

  58. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  CAS  Google Scholar 

  59. Mylsamy K, Rajendran I (2010) Investigation on physio-chemical and mechanical properties of raw and Alkali-treated agave Americana fiber. J Reinf Plast Compos 29:2925–2935

    Article  CAS  Google Scholar 

  60. Ali M (2009) Natural fibers as construction materials. Non-conventional materials and technologies. In: Proceedings of the 11th international conference on non-conventional materials and technologies, Bath, UK

    Google Scholar 

  61. Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: vakka, date and bamboo. Compos Struct 77:288–295

    Article  Google Scholar 

  62. Joseph K, Toledo RD, James B et al (1999) A review on sisal fiber reinforced polymer composites. Revista Brasileira de Engenharia Agricola e Ambiental 3:367–379

    Article  Google Scholar 

  63. Obi Reddy K, Sivamohan Reddy G, Uma Maheswari C et al (2010) Structural characterization of coconut tree leaf sheath fiber reinforcement. J Forestry Res 21:53–58

    Article  CAS  Google Scholar 

  64. Monteiro SN, Aquino RCMP, Lopes FPD (2008) Performance of curaua fibers in pullout tests. J Mater Sci 43:489–493

    Article  CAS  Google Scholar 

  65. Rao KMM, Prasad AVR, Babu MNVR et al (2007) Tensile properties of elephant grass fiber reinforced polyester composites. J Mater Sci 42:3266–3272

    Article  CAS  Google Scholar 

  66. Beckwith SW (2008) Natural fibers: nature providing technology for composites. SAMPE J 44:64–65

    Google Scholar 

  67. Reddy GV, Naidu SV, Shobharani T (2009) A study on hardness and flexural properties of kapok/sisal composites. J Reinf Plast Compos 28:2035–2044

    Article  CAS  Google Scholar 

  68. De Rosa IM, Kenny JM, Mohd M et al (2011) Effect of chemical treatments on the mechanical and thermal behavior of okra (Abelmoschus esculentus) fibers. Compos Sci Technol 71:246–254

    Article  CAS  Google Scholar 

  69. Venkateshwaran N, Elayaperumal A (2010) Banana fiber reinforced polymer composites—a review. J Reinf Plast Compos 29:2387–2396

    Article  CAS  Google Scholar 

  70. De Rosa IM, Santulli C, Sarasini F (2010) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater Des 31:2397–2405

    Article  CAS  Google Scholar 

  71. Sreenivasan VS, Somasundaram S, Ravindran D et al (2011) Microstructural, physico-chemical and mechanical characterization of Sansevieria cylindrica fibers—an exploratory investigation. Mater Des 32:453–461

    Article  CAS  Google Scholar 

  72. Sathishkumar TP, Navaneethakrishnan P, Shankar S (2012) Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites. Compos Sci Technol 72:1183–1190

    Article  CAS  Google Scholar 

  73. Sathishkumar TP, Navaneethakrishnan P, Shankar S et al Mechanical properties of randomly oriented snake grass fiber with banana and coir fiber-reinforced hybrid composites. J Compos Mater. https://doi.org/10.1177/0021998312454903

  74. Davies P, Morvan C, Sire O et al (2007) Structure and properties of fibers from sea-grass (Zostera marina). J Mater Sci 42:4850–4857

    Article  CAS  Google Scholar 

  75. Le Digabel F, Averous L (2006) Effect of lignin content on the properties of lignocellulose-based biocomposites. Carbohyd Polym 66:537–545

    Article  CAS  Google Scholar 

  76. Mohanty AK, Misra M and Drzal LT (2005) Natural fibers, biopolymers and biocomposites. CRC Press, pp 1–36

    Google Scholar 

  77. Sanjay MR, Arpitha GR, Naik LL et al (2016) Applications of natural fibres and its composites: an overview. Nat Resour 7:108–114

    CAS  Google Scholar 

  78. Kadolph SJ, Langford AL (2001) Textiles, 9th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  79. Bongarde US, Shinde VD (2014) Review on natural fibre reinforcement polymer composites. Int J Eng Sci Innov Technol 3(2):431–436

    Google Scholar 

  80. Mussig J (2010) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, New Jersey

    Book  Google Scholar 

  81. Kovacevic Z, Vukusic SB, Zimniewska M (2012) Comparison of Spanish broom (Spartium junceum L.) and flax (Linum usitatissimum) fibre. Text Res J 82(17):1786–1798

    Article  CAS  Google Scholar 

  82. de Albuquerque AC, Joseph K, de Carvalho LH et al (2000) Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Compos Sci Technol 60:833–844

    Article  Google Scholar 

  83. Ramesh M, Deepa C, Aswin US et al (2017) Effect of alkalization on mechanical and moisture absorption properties of Azadirachta indica (Neem Tree) fiber reinforced green composites. Trans Indian Inst Met 70(1):187–199

    Article  CAS  Google Scholar 

  84. Barreto ACH, Rosa DS, Fechine PBA et al (2011) Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos Part A 42:492–500

    Article  CAS  Google Scholar 

  85. Campos A, Marconcini JM, Franchetti SMM et al (2012) The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polym Degrad Stab 97(10):1948–1955

    Article  CAS  Google Scholar 

  86. Kabir MM, Wang H, Aravinthan T et al (2011) Effects of natural fiber surface on composite properties: a review. eddBE Proc Ener Environ Sustain, pp 94–99

    Google Scholar 

  87. Milanese, Ceclia A, Cioffi H et al (2011) Mechanical behavior of natural fiber composites. Proc Eng 10:2022–2027

    Google Scholar 

  88. Sulawan K, Wimonlak S, Kasama J (2010) Effect of heat treated sisal fiber on physical properties of polypropylene composites. Adv Mater Res 123–125:1123–1126

    Google Scholar 

  89. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  90. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interf 8(5):313–343

    Article  CAS  Google Scholar 

  91. Scarponi C, Pizzinelli CS (2009) Interface and mechanical properties of natural fibers reinforced composites: A review. Int J Mater Prod Technol 36:278–303

    Article  CAS  Google Scholar 

  92. Almeida AEFS, Tonoli GHD, Santos SF et al (2013) Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age. Cem Concr Compos 42:49–58

    Article  CAS  Google Scholar 

  93. Filho RDT, Silva FA, Fairbairn EMR et al (2009) Durability of compression molded sisal fiber reinforced mortar laminates. Construct Build Mater 23(6):2409–2420

    Article  Google Scholar 

  94. Wei J, Meyer C (2015) Degradation mechanisms of natural fiber in the matrix of cement composites. Cem Concr Res 73:1–16

    Article  CAS  Google Scholar 

  95. Bhoopathi R, Deepa C, Sasikala G et al (2015) Experimental investigation on mechanical properties of hemp-banana-glass fiber reinforced composites. Appl Mech Mater 766–767:167–172

    Article  Google Scholar 

  96. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fiber-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  CAS  Google Scholar 

  97. Joseph P, Rabello MS, Mattoso LH et al (2002) Environmental effects on the degradation behaviour of sisal fiber reinforced polypropylene composites. Compos Sci Technol 62:1357–1372

    Article  CAS  Google Scholar 

  98. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  99. Ramesh M, Elvin RP, Palanikumar K et al (2011) Surface roughness optimization of machining parameters in machining of composite materials. Int J Appl Res Mech Eng 1(1):26–32

    Google Scholar 

  100. Gon D, Das K, Paul P et al (2012) Jute composites as wood substitute. Int J Tex Sci 1(6):84–93

    Article  Google Scholar 

  101. Mohanty AK, Khan MA, Hinrichsen G (2000) Effect of chemical modification on the performance of biodegradable jute yarn biopol composites. J Mater Sci 35:2589–2595

    Article  CAS  Google Scholar 

  102. Mohanty AK, Khan MA, Hinrichsen G (2000) Influence of chemical surface modification on the properties of biodegradable jute fabrics-polyester amide composites. Compos Part A 31(2):143–150

    Article  Google Scholar 

  103. Sanadi AR, Caulfield DF (2000) Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent. Compos Interf 7(1):31–43

    Article  CAS  Google Scholar 

  104. Nunna S, Chandra PR, Shrivastava S et al (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31(11):759–769

    Article  CAS  Google Scholar 

  105. Ramesh P, Prasad BD, Narayana KL (2018) Characterization of kenaf fiber and its composites: a review. J Reinf Plast Compos. https://doi.org/10.1177/0731684418760206

    Article  Google Scholar 

  106. Brahmakumar M, Pavithran C, Pillai RM (2005) Coconut fiber reinforced polyethylene composites: effect of natural waxy surface layer of the fiber on fiber/matrix interfacial bonding and strength of composites. Compos Sci Technol 65:563–569

    Article  CAS  Google Scholar 

  107. Yousif BF, Ku H (2012) Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Mater Des 36:847–853

    Article  CAS  Google Scholar 

  108. Yousif BF, Tayeb NE (2008) Adhesive wear performance of T-OPRP and UT-OPRP composites. Tribol Lett 32(3):199–208

    Article  CAS  Google Scholar 

  109. Yousif BF (2009) Frictional and wear performance of polyester composites based on coir fibers. In: Proceedings of the institution of mechanical engineers, Part J. J Eng Tribol 223:51–59

    Google Scholar 

  110. Hong CK, Hwang I, Kim N et al (2008) Mechanical properties of silanized jute-polypropylene composites. J Ind Eng Chem 14:71–76

    Article  CAS  Google Scholar 

  111. John MJ, Francis B, Varughese KT et al (2008) Effect of chemical modification on properties of hybrid fiber biocomposites. Compos Part A 39:352–363

    Article  CAS  Google Scholar 

  112. Taib RM, Ramarad S, Ishak ZAM et al (2009) Effect of immersion time in water on the tensile properties of acetylated steam-exploded Acacia mangium fibers filled polyethylene composites. J Thermoplast Compos Mater 22:83–98

    Article  CAS  Google Scholar 

  113. Khalil HPSA, Tehrani MA, Davoudpour Y et al (2013) Natural fiber reinforced poly(vinyl chloride) composites: a review. J Reinf Plast Compos 32(5):330–356

    Article  CAS  Google Scholar 

  114. Maslinda AB, Majid MSA, Ridzuan MJM et al (2017) Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fiber reinforced epoxy composites. Compos Struct 167:227–237

    Article  Google Scholar 

  115. Ramesh M, Palanikumar K, Reddy KH (2013) Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites. Proc Eng 51:745–750

    Article  CAS  Google Scholar 

  116. Ghani MAA, Salleh Z, Hyie KM et al (2012) Mechanical properties of kenaf/fiber glass polyester hybrid composite. Proc Eng 41:1654–1659

    Article  CAS  Google Scholar 

  117. Bernard M, Khalina A, Ali A et al (2011) The effect of processing parameters on the mechanical properties of kenaf fiber plastic composite. Mater Des 32:1039–1043

    Article  CAS  Google Scholar 

  118. Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali-silane treatment on the tensile and flexural properties of short fiber non-woven kenaf reinforced polypropylene composites. Compos Part A 43:1431–1440

    Article  CAS  Google Scholar 

  119. Lee BH, Kim HS, Lee S et al (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579

    Article  CAS  Google Scholar 

  120. Atiqah A, Maleque MA, Jawaid M et al (2014) Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos Part B 56:68–73

    Article  CAS  Google Scholar 

  121. Kwon HJ, Sunthornvarabhas J, Park JW et al (2014) Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Compos Part B 56:232–237

    Article  CAS  Google Scholar 

  122. Shukor F, Hassan A, Islam MS et al (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA bio-composites. Mater Des 54:425–429

    Article  CAS  Google Scholar 

  123. Velde KV, Kiekens P (2001) Thermoplastic pultrusion of natural fiber reinforced composites. Compos Struct 54:355–360

    Article  Google Scholar 

  124. Memona A, Nakai A (2013) Mechanical properties of jute spun yarn/PLA tubular braided composite by pultrusion molding. Ener Proc 34:818–829

    Article  CAS  Google Scholar 

  125. Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fiber-polypropylene composites. Polym 41:1589–1596

    Article  CAS  Google Scholar 

  126. Angelov I, Wiedmer S, Evstatiev M et al (2007) Pultrusion of a flax/polypropylene yarn. Compos Part A-Appl Sci Manuf 38(5):1431–1438

    Article  CAS  Google Scholar 

  127. Arbelaiz A, Fernandez B, Ramos JA et al (2006) Thermal and crystallization studies of short flax fiber reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121

    Article  CAS  Google Scholar 

  128. Arib RMN, Sapuan SM, Ahmad MMHM et al (2006) Mechanical properties of pineapple leaf fiber reinforced polypropylene composites. Mater Des 27:391–396

    Article  CAS  Google Scholar 

  129. Doan TTL, Brodowsky H, Mader E (2001) Jute fiber/polypropylene composites II: Thermal, hydrothermal and dynamic mechanical behavior. Composi Sci Technol 67:2707–2714

    Article  CAS  Google Scholar 

  130. Fung KL, Xing XS, Li RKY et al (2003) An investigation on the processing of sisal fiber reinforced polypropylene composites. Compos Sci Technol 63:1255–1258

    Article  CAS  Google Scholar 

  131. Khondker OA, Ishiaku US, Nakai A et al (2006) A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos Part A-Appl Sci 37(12):2274–2284

    Article  CAS  Google Scholar 

  132. Lee SH, Wang S, George P et al (2007) Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nano-indentation and finite element analysis. Compos Part A-Appl Sci Manuf 38(6):1517–1524

    Article  CAS  Google Scholar 

  133. Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fiber composites: an evaluation of the influence of porosity. Compos Sci Technol 63:1265–1272

    Article  CAS  Google Scholar 

  134. Malkapuram R, Kumaran V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189

    Article  CAS  Google Scholar 

  135. Palanikumar K, Ramesh M, Reddy KH (2016) Experimental investigation on the mechanical properties of green hybrid sisal and glass fiber reinforced polymer composites. J Nat Fiber 13(3):321–331

    Article  CAS  Google Scholar 

  136. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fiber composites and their mechanical performance. Compos A 83:98–112

    Article  CAS  Google Scholar 

  137. Rana AK, Mandala A, Bandyopadhyay S (2003) Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol 63:801–806

    Article  CAS  Google Scholar 

  138. Thwe MM, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63:375–387

    Article  CAS  Google Scholar 

  139. Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fiber reinforced plastics. Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  140. Zampaloni M, Pourboghrat F, Yankovich SA et al (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A 38(6):1569–1580

    Article  CAS  Google Scholar 

  141. Peng X, Fan M, Hartley J et al (2011) Properties of natural fiber composites made by pultrusion process. J Compos Mater 46(2):237–246

    Article  CAS  Google Scholar 

  142. Bachtiar D, Sapuan SM, Hamdan MM (2008) The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater Des 29:1285–1290

    Article  Google Scholar 

  143. Bachtiar D, Sapuan SM, Hamdan MM (2009) The influence of alkaline surface fibre treatment on the impact properties of sugar palm fibre-reinforced epoxy composites. Polym Plast Technol Eng 48:379–383

    Article  CAS  Google Scholar 

  144. Ishak MR, Leman Z, Sapuan SM et al (2009) The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. Int J Mech Mater Eng 4:316–320

    Google Scholar 

  145. Leman Z, Sapuan SM, Azwan M et al (2008) The effect of environmental treatments on fiber surface properties and tensile strength of sugar palm fiber-reinforced epoxy composites. Polym Plast Technol Eng 47:606–612

    Article  CAS  Google Scholar 

  146. Ticoalu A, Aravinthan T, Cardona F (2010) Experimental investigation into gomuti fibres/polyester composites. In: Fragomeni S, Venkatesan S, Lam NTK and Setunge S (eds) 21st Australasian conference on the mechanics of structures and materials, Melbourne, Australia. The Netherlands: CRC Press/Balkema, 7–10 Dec 2010, pp. 451–456

    Google Scholar 

  147. Leman Z, Sapuan SM, Saifol AM et al (2008) Moisture absorption behavior of sugar palm fiber reinforced epoxy composites. Mater Des 29:1666–1670

    Article  CAS  Google Scholar 

  148. Sahari J, Sapuan SM, Ismarrubie ZN et al (2011) Comparative study of physical properties based on different parts of sugar palm fibre reinforced unsaturated polyester composites. Key Eng Mater 471–472:455–460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramesh, M., Deepa, C. (2019). Processing of Green Composites. In: Muthu, S. (eds) Green Composites. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1972-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1972-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1971-6

  • Online ISBN: 978-981-13-1972-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics