Advertisement

Numerical Investigation of Cylindrical Heat Pipe Performance

  • Aishwarya Chaudhari
  • Mangesh BorkarEmail author
  • Arvind Deshpande
  • Mandar Tendolkar
  • Vivek K. Singh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 757)

Abstract

The thermophysical properties of wick microstructures and heat interactions across the wick play a central role in heat pipe performance. It is therefore essential to analyse the wick microstructures. The performance of a cylindrical heat pipe with a screen mesh wick structure is analysed numerically using two-dimensional, axisymmetric, and transient model. A fully implicit, structured collocated finite-volume scheme is used in conjunction with the SIMPLE algorithm to solve Navier–Stokes equations for both, liquid and vapour phases. Present model assumes the wick to be saturated with the liquid and a porous medium formulation is employed for the wick. The evaporation and condensation rates at the diphasic interface are determined using kinetic theory. The model is tested for time step independency and a parametric study is performed by varying the permeability of wick and heat input. The results presented are in good agreement with the data from the previous literature.

Keywords

Cylindrical heat pipe Permeability Evaporation Condensation 

Nomenclature

\( C_{p} \)

Specific heat

k

Thermal conductivity

K

Wick permeability

\( \dot{m}^{{\prime \prime }} \)

Interface mass flux

M

Molecular weight

N

Number of nodes

T

Temperature

P

Pressure

\( \vec{u} \)

Velocity vector

Q

Heat input

\( T_{\infty } \)

Coolant temperature

\( h_{\infty } \)

Heat transfer coefficient

\( \hat{P} \)

Hydrodynamic pressure

\( L_{E} \)

Length of evaporator

\( L_{C} \)

Length of condenser

\( L_{A} \)

Length of adiabatic

Greek

\( \sigma \)

Accommodation coefficient

\( \emptyset \)

Porosity of the wick

Subscript

eff

Effective

int

Interface

op

Operating

0

Reference

v

Vapour

l

Liquid

r

Radial direction

x

Axial direction

References

  1. 1.
    Carbajal, G., Sobhan, C.B., Peterson, G.P.: Numerical study of heat pipe heat spreaders with large periodic heat input. J. Thermophys. Heat Transf. 20(4) (2006)CrossRefGoogle Scholar
  2. 2.
    Carbajal, G., Sobhan, C.B., Peterson, G.P., Queheillalt, D.T., Wadley, H.N.G.: Thermal response of a flat heat pipe sandwich structure to a localized heat flux. Int. J. Heat Mass Transf. 49(21–22), 4070–4081 (2006)CrossRefGoogle Scholar
  3. 3.
    Carbajal, G., Sobhan, C.B., Peterson, G.P.B., Queheillalt, D.T., Wadley, H.N.G.: A quasi-3D analysis of the thermal performance of a flat heat pipe. Int. J. Heat Mass Transf. 50(21–22), 4286–4296 (2007)CrossRefGoogle Scholar
  4. 4.
    Guyon, E., Oger, L., Plona, T.J.: Transport properties in sintered porous media composed of two particle sizes. J. Phys. D. 20(12), 1637–1644 (1987)CrossRefGoogle Scholar
  5. 5.
    Noda, H., Yoshioka, K., Hamatake, H.: Experimental study on the permeability of screen wicks. JSME Int. J. 36, 357–363 (1993)Google Scholar
  6. 6.
    Adkins, R., Moss, T.: Measuring flow properties of wicks for heat pipe solar receivers. In: Presented at 12th Annual International Solar Energy Conference, American Society of Mechanical Engineers, New York, pp. 103–108 (1990)Google Scholar
  7. 7.
    Hanlon, A., Ma, H.B.: Evaporation heat transfer in sintered porous media. J. Heat Transf. 125, 644–652 (2003)CrossRefGoogle Scholar
  8. 8.
    Singh, R., Akbarzadeh, A., Mochizuki, M.: Effect of Wick characteristics on the thermal performance of the miniature loop heat pipes. ASME J. Heat Transf. 131, 1–10 (2009)CrossRefGoogle Scholar
  9. 9.
    Iverson, D., Davis, T.W., Garimella, S.V., Kang, S.S.: Heat and mass transport in heat pipe Wick structures. J. Thermophys. Heat Transf. 21(2), 392–404 (2007)CrossRefGoogle Scholar
  10. 10.
    Cao, Y., Faghri, A.: Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input. Numer. Heat Transf. Part A: Appl. 18(4), 483–502 (1991)CrossRefGoogle Scholar
  11. 11.
    Aghvami, M., Faghri, A.: Analysis of flat heat pipes with various heating and cooling configurations. Appl. Thermal Eng. 31(14–15), 2645–2655 (2011)CrossRefGoogle Scholar
  12. 12.
    Famouri, M., Carbajal, G., Li, C.: Transient analysis of heat transfer and fluid flow in a polymer-based Micro Flat Heat Pipe with hybrid Wicks. Int. J. Heat Mass Transf. 70, 545–555 (2014)CrossRefGoogle Scholar
  13. 13.
    Faghri, A., Buchko, M.: Experimental and numerical analysis of low-temperature heat pipes with multiple heat sources. J. Heat Transf. 113(3), 728–734 (1991)CrossRefGoogle Scholar
  14. 14.
    Vadakkan, U., Murthy, J.Y., Garimella, S.V.: Transient analysis of flat heat pipes. In: Proceedings of the ASME Summer Heat Transfer Conference, Las Vegas, Nevada (2003)Google Scholar
  15. 15.
    Carbajal, G., Li, C.: Transient analysis of heat transfer and fluid flow in a cylindrical heat pipe with hybrid wicks. Int. J. Heat Mass Transf. 70 (2016)Google Scholar
  16. 16.
    Ooijen, H.v., Hoogendoorn, C.: Vapor flow calculations in a flat-plate heat pipe. AIAA J. 17(11), 1251–1259 (1979)Google Scholar
  17. 17.
    Rayleigh, L.: LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 34(211), 481–502 (1892)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Aishwarya Chaudhari
    • 1
  • Mangesh Borkar
    • 1
    Email author
  • Arvind Deshpande
    • 1
  • Mandar Tendolkar
    • 1
  • Vivek K. Singh
    • 2
  1. 1.Department of Mechanical EngineeringVeermata Jijabai Technological InstituteMumbaiIndia
  2. 2.Thermal DivisionSpace Application Centre, ISROAhmedabadIndia

Personalised recommendations